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ABSTRACT

As a contribution to the ongoing debate on the relation between Einstein’s general relativity and quantum theory we revitalize

Eddington’s conjecture that measuring is not a process of comparison with some presumed external entity dubbed Nature

but a process of identification of the classical measuring entities with the variables of a space concept that serves to encode

the condition of the possibility to measure. By analyzing the mathematics of general relativity, elementary particle physics,

electrodynamics and quantum mechanics we show this conjecture to provide the key for understanding the existence of

distinct realms in physics, their mutual relation and their success.

Note: The author of this paper passed away before completion of the writeup. Therefore, some known issues in transfers of

mathematical formalisms to expressions in physics theory could not be resolved, and some flaws could not be corrected any

more. Nevertheless, the general idea, and several methodological approaches of cross-feeding algebra of tensors and spinors

with concepts in theoretical physics, may be stimulating to the reader.
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1. Introduction

1.1. Tracing the physiognomy of Riemannian space: Eddington’s principle of identification

By discarding the restrictions of Euclidean geometry which proved to be too restrictive to reproduce the Perihelion shift of

Mercury the new concept of Riemannian space allowed Einstein to explain the Perihelion shift and moreover to predict the

redshift of light and the deflection of light in the gravitational field of the sun.

Eddington 1 in his seminal 1923 book The Mathematical Theory of Relativity 2 unfolded the idea that the structure of Einstein’s

General Relativity and its successes are completely determined by the structure of Riemannian space as soon as the metric

gµν required to be able to measure gets identified with the 2-rank tensor Gµν derived from the Riemann-Christoffel tensor.

This requirement constitutes the condition of the possibility to measure. It is identical with Einstein’s 1st field equation. On

the assumption that forcefree objects in General Relativity move along geodesics the two most impressive results of early

General Relativity - the Perihel shift of Mercury and the deflection of star light in the gravitational field of the Sun - are

correctly derived from this equation within a few mathematical steps.

The bold step that Einstein took and that rendered possible these successes of early General Relativity was the ingenious idea

to postulate the existence of a gravito-inertial field to be identified with the metric gµν of Riemannian space.

For these early successes irrelevant but nevertheless important to complete the theory Einstein went on to identify the con-

travariant observational entities compiled in the energy-stress tensor T µν with the covariant variables of the space concept

contained in Gµν . This marks Einstein’s 2nd field equation.

1.1.1. A new interpretation of measurement

The stunning ease of the derivation of the fundamental observational facts of General Relativity from a simple commitment

about measuring within the basic space concept led Eddington to fundamentally revise the concept of measurement.

The traditional view of measurement as a process of comparing the outcome of observations with preexisting entities of an

extraneous entity dubbed Nature according to the conjecture of Eddington should be replaced by what he calls a principle of

identification. The entities measured by observers - instead of being subjected to a process of comparison - get identified with

the variables describing an underlying space concept, viz. Riemannian space. The concept of measurement in the traditional

sense gets replaced by the principle of identification.

The radically new interpretation of measurement says: contrary to the traditional claim no reference to an extraneous entity

like Nature is involved in any measurement. What physicists see as a result of measuring is reflecting not Nature but is

reflecting the condition of the possibility to measure that has been encoded in the underlying space concept.

The space concept in this view is serving two purposes: (i) it offers an invariant that plays the role of a measuring stick,

ds2 = gµνdx
µdxν , and (ii) it allows to encode the condition of the possibility to measure. This condition is constituting

the equation of motion. A measurement whence while fulfilling the condition of the possibility to measure will confirm the

equation of motion. According to the conjecture of Eddington this intrinsic relation provides the key to explain the splendid

successes of early General Relativity.

1.1.2. A series of strange identifications pervades the edifice of physics

A century later a closer look reveals a whole series of such strange identifications pervading the edifice of theoretical physics,

identifications physicists have become familiar with. Nothing in these identifications seems to be rationally placeable:

• In elementary particle physics the fundamental leptons and quarks get identified with the components of spinors.

Spinors are the mathematical parameters that allow to span complex flat space by base vectors of length zero.

• In Maxwell’s theory of electro-magnetism the electromagnetic field tensor Fµν gets identified with the bivector of real

flat space with the electric and magnetic field representing its polar and axial components.

1estimated to be the most distinguished astrophysicist of his time (Chandrasekhar 1983,39)
2First published in 1923, the 2nd edition of 1924 experienced its eleventh reprint in 1975.
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• In Quantum Mechanics (QM) the quantum mechanical objects whose existence gets confirmed by our experimental

data get identified with wave functions representing the mathematical support of the generators of translations combined

with Galilei transformations.

Though rationally inaccessible nobody is wondering anymore about these identifications.

1.2. The aim of this paper

The aim of this paper is to show that the conjecture of Eddington derived from the analysis of General Relativity as well

applies to the other realms of physics: elementary particle physics, Maxwell’s electrodynamics, quantum mechanics.

Indeed the different realms of physics historically have evolved as qualitatively distinct because they are built each one

on another space concept. The consistency of the respective space concept guarantees the consistency of the theoretical

description. Consistency with the experimental findings is established because the objects that get found experimentally are

entities emerging from the space concept.

In each of the above mentioned realms the experimental and theoretical efforts end up in the astonishing insight that the

resulting theoretical description is tracing the physiognomy of the underlaying space concept when this concept has become

equipped with the appropriate condition of the possibility to measure.

We will begin with shortly sketching the considerations of Eddington related to General Relativity (sect.2). We then concen-

trate on elementary particle physics where the insight of Eddington gets its most obvious realisation (sect. 3.1). After a short

excursion to Maxwell’s electrodynamics (sect. 4) we show how Quantum Mechanics fits into this scheme (sect.5).

2. Einstein’s general relativity

The following presentation is taken from the book of Sir Arthur Stanley Eddington The Mathematical Theory of Relativity,

1975, first ed. 1923. We try to avoid mathematical subtleties, that tend to obscure the perspecuity of the derivation. Interested

readers may consult the original book.

2.1. Identification as a key to understand General Relativity

General Relativity (GRT) is based on the concept of Riemannian space. This space concept offers an invariant length element

ds2 = gµνdx
µdxν (1)

with gµν the metric tensor. The existence of a metric tensor in the framework of General Relativity is believed to be indis-

pensable to perform a measurement 3. The only tensor available in Riemannian space that could serve this purpose is derived

from the fundamental Riemann-Christoffel tensor Bρµνǫ by the mathematical operation of contraction:

Gµν = Bρµνρ (2)

Gµν is called the Einstein tensor. The condition of the possibility to measure is established by identifying the metric tensor

gµν with the Einstein tensor

Gµν = λgµν (3)

with λ a proportionality constant. 4 This is the 1st Einstein field equation.

The fact that for all practical applications λ is very small allows to write eq.(3) as

Gµν = 0 (4)

This equation is referred to as Einstein’s law of gravitation.

3Note the difference to elementary particle physics and quantum mechanics where no such tensor is available
4”Tensors not containing derivatives beyond the second must necessarily be compounded from gµν and Bǫ

µνσ so that, unless we are prepared to go

beyond the second order, the choice of a law of gravitation is very limited, and we can scarcely avoid relying on the tensor Gµν . Without introducing higher

derivatives, which would seem out of place in this problem, we can suggest as an alternative to Gµν = 0 the law Gµν = λgµν ” (Eddington 1923,81)
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Inserting the condition of the possibility to measure, eq.(4), into the invariant length element eq.(1) within a few steps 5 leads

to the solution known as the Schwarzschild metric (Edd 1923,85) with m an integration constant.

ds2 = −γ−1dr2 − r2dθ2 − r2sin2θ dΦ2 + γ dt2 with (γ = 1− 2m

r
) (5)

2.2. The early successes

Eq.(5) immediately implies a displacement of the Fraunhofer lines in a gravitational field, the so-called gravitational redshift

of light (Edd 1923,91). Assuming the atoms in some region to be at rest, dr, dθ, dΦ = 0 gives

ds2 = γ dt2 with (γ = 1− 2m

r
) (6)

Accordingsly the times of the vibrations of the differently placed atoms will be inversely proportional to
√
γ. The observations

indeed indicate this redshift to be found in the data.

Assuming objects in curved space to move on geodesics 6, i.e. inserting eq.(5) into the equation for a geodesics

d2xµ

ds2
− Γµαβ

dxα

ds

dxβ

ds
= 0 (7)

immediately reproduces the miraculous effects thad made up the fulminant successes of early General Relativity that made

Einstein become famous: the Perihelion shift of Mercury and the deflection of light in the gravitational field of the sun.

The 2nd Einstein field equation

Gµν − 1/2gµνG = 8πκT µν (8)

determines how to identify the contravariant measuring entities of classical mechanics - as compiled in the energy-stress

tensor T µν - one by one with the covariant curvatures assembled in the Einstein tensor Gµν . A constant κ [cm/g] appears to

readjust the dimensions of the covariant space variables [cm] to the contravariant dimensions used by experimentalists [g]. It

turns out that κ is Newton’s gravitational constant.The lhs is divergence free by mathematical identity. By this identification

the energy-stress tensor automatically gets divergence free.

It may be noted that the early successes are derived without making use of the 2nd Einstein field equation. This equation gets

needed to establish the connection to continuous matter and to address Newton’s theory (Edd 1923,p.101).

Both Einstein equations reflect the fact that the aim of physicists is to measure. What these equations do is to encode the

condition of the possibility to measure in Riemannian space, eq.(3), and to identify the measuring entities with the variables

of the space concept, viz. the curvatures compiled in the Einstein tensor, eq.(8).

The bold step Einstein took was to identify the gravitational field addressed by Newton’s theory with the metric gµν of

Riemannian space. This identification is not expressed by a mathematical equation. It constitutes the fondament of General

Relativity.

2.3. A new conceptualization of measurement

The ease with which the fundamental and gloriously confirmed new results of General Relativity are derived from simple

commitments about measurement led Eddington to introduce his Principle of identification. This principle presents a key to

understand this phenomenon. It suggests a radically new interpretation of measurement.

Traditionally a measurement is thought to allow to compare the outcome of a theory with the features of some metaphysical

extraneous entity dubbed Nature. This is conjectured to be a process of ever better approximation to reveal the nature of

Nature.

In contrast measurement according to Eddington means the identification of the entities used by observers with the variables

of an adequately chosen space concept. At the end the requirement of consistency acts as the invisible hand that guides the

theory and the experiment to trace the physiognomy of the underlying space.

5with the following boundary conditions specified: (i) spatial spherical symmetry to address an isolated object; (ii) postulating a static solution as an

essential condition to derive any analytical solution at all; (iii) invariance against time reflection; (iv) the invariant length ds2 gets required to approach the

Minkowski metric at r → ∞.
6This would be not adequate neither for elementary particle physics nor for Quantum Mechanics
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2.4. The objects emerge from the condition of the possibility to measure

How is consistency of the theoretical implications with the observational results being effected? The solution of this mystery

lies in the fact that the space concept provides the mathematical structures to be identified with ”objects”. These objects by

their very nature emerge from the condition of the possibility to measure encoded in the space concept - together with the

mutual interactions these objects undergo. These objects astronomers trace with their measuring appliances.

The consistency of the space concept induces the consistency of the theoretical implications with the observations made on

objects that appear to be predefined in the metric.

2.4.1. The emergence of Keplerian orbits

The set of differential equations given by inserting the Schwarzschild metric eq.(5) into the geodesics eq.(7) allows to isolate

an invariant of the equation of motion

γ
dt

ds
= c with c an integration constant , (γ = 1− 2m

r
) (9)

indicating that the coordinate time dt near the Schwarzschild radius rS = 2m will begin to explode in comparison with the

invariant length element:

dt = c
ds

1− 2m
r

(10)

Eliminating dt and ds and switching to a coordinate u = 1/r leads to the equation of the Keplerian orbit which classically

(i.e. far from the Schwarzschild radius) would have been interpreted as the motion of a planet in the gravitational field of a

central object of mass m:

d2u

dΦ2
+ u =

m

h2
+ 3mu2 (11)

with h = r2 dΦds another integral of the motion. This resembles the classical equation of a planetarian orbit with the coordinate

differential dt in the constant h replaced by the invariant length element ds. The additional factor (1 − 2m/r) in the metric

appears as an additional term 3mu2 in the equation of the orbit eq.(11) determining the Perihelion shift 7 of planetarian orbits
8.

2.4.2. The identification of Mercury as a disturbance in the metric

Both objects, the planet as well as the Keplerian central object, are an imagined extrapolation within the Newtonian picture,

the central object being represented by the heavy massm. These objects emerge from the space concept as soon as it becomes

equipped with the condition of the possibility to measure eq.(4). The gravito-inertial field, being identified with the metric

gµν , constitutes the interaction these emerging objects undergo.

The inability to reproduce the perihelion shift of Mercury within the frame of Newtonian physics showed that the restrictions

imposed by Euclidean geometry to admit rigid geometrical structures were too strong to be able to cover the observational

reality measuring appliances would show. Skipping these restrictions immediately unleashed the modification (1 − 2m/r)
within the metric responsible for the Perihelion shift of the orbits identified within the metric.

Tracing the calculation of the Perihel shift of Mercury shows that it is not the planet Mercury that measuring appliances are

measuring. What we measure is a disturbance in the metric. The influence of this small disturbance of the metric shows that

the astronomers with their observational appliances trace the metric of the underlying space concept with all its ramifications.

Euclidean space with its restrictions to rigid objects is a too rigid a space concept to be able to reproduce the results of

observations. Riemannian space is not a more complicated space but a space concept freed of these restrictions.

7which in the case of Mercury by century-long accumulation has become remarkable for astronomers (Edd 1923,88).
8The classical derivation is using dt instead of ds. dt is a complete differential necessary to represent a coordinate but not invariant. ds is invariant but

not a complete differential. This difference is insignificant at this point of discussion.
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2.4.3. The emergence of BH’s within the metric

Long after Eddington’s reflections on Einstein’s General Relativity it was recognized that the most prominent disturbance

given by the factor (1− 2m/r) indicating a spurious singularity of the metric could be adressed as Black Holes (BH), objects
9. now believed to reside inside nearly every major galaxy. The features showed by and defining BH’s are taken from the

ramifications the Schwarzschild metric eq.(5) offers.

2.5. General Relativity is a statement about measurement

General Relativity doesn’t describe an outer world dubbed Nature. General Relativity is a statement about measurement. It is

a statement on how to encode the condition of the possibility to measure in the space concept.

The space concept when married with the condition of the possibility to measure makes emerge the objects of the theory.

Einstein’s bold step to identify a postulated physical gravitational field with the metric gµν
10. provides the bridge for the

successfull identification of the objects observed in astronomy with disturbances of the metric. This step defines the interaction

of the astronomical objects.

Both, observations and their theoretical framing, appear to be tracing the physiognomy of the space concept. The birth of black

holes in the metric and their identification in astronomical observations is a hint to the relevance of Eddington’s conjecture.

The internal consistency of the mathematical space concept finally not only does guarantee the internal consistency of the

physical theory but also its consistency with the results of observations, since the objects of the theory emerge from the space

concept. The key to and solution of this enigma is the encoding of the condition of the possibility to measure within the space

concept.

3. Elementary particle physics

At the heart of our paper is the discovery that elementary particle physics with all its ramifications as compiled in the Standard

Model (SM) is tracing the physiognomy of flat space when this space is extended to complex. The structure of a flat complex

space has been investigated by Cartan (1938) in his standard book The theory of spinors. 11 We give a short summary of the

mathematical base followed by the consequences of the identifications that make it become the base of elementary particle

theory. 12

3.1. Flat space taken to be complex

3.1.1. The defining quadratic form of a complex space

Real n-dimensional flat spacesEn are constituted by the existence of a quadratic form 13 Φ = (x1r)
2+ . . .+(xnr )

2. This form

is invariant under rotations and translations and thus capable to serve as the representation of a measuring rod.

Cartan has chosen the quadratic form F to characterize a complex space:

F ≡ z1z1′ + . . . zizi′ + . . .+ zνzν′ + z20 (12)

A prominent feature is a pairing of the variables: the indices i, i′ represent single complex dimensions grouped into pairs. The

variable z0 is designating an unpaired dimension taken to be real by assumption. The transition to real space of dimension

n = 2ν + 1 is done by choosing zi′ to be the complex conjugate of zi. Setting the unpaired coordinate z0 identically to zero

then leads to a real space of dimension n = 2ν.

9The transition from black holes to the Keplerian central objects needs a) a transition to isotropic coordinates that guarantee that a measurement with a

rigid stick (ds=constant) effected in different directions gives the same result (Edd 1923,93) and b) the transition to continuous matter (Edd 1923,101)
10with g00 appearing to represent the Newtonian potential
11Throughout this paper we will refer to this book by abbreviating (C 100) meaning (Cartan 1938, 100)
12We try to avoid mathematical subtleties, that tend to obscure the perspecuity of the derivation. Interested readers may consult the original book.
13The subscript r denotes coordinates in real space.
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3.1.2. Compound indices

The transition to complex automatically makes the orthogonal unit base vectors to become isotropic, i.e. vectors of length

zero. The appearance of isotropic vectors according to Cartan is the paradigmatic geometrical foundation of the existence of

spinors.

The coefficients needed to span the space by isotropic vectors constitute the components of a spinor ξα. Their explicit geome-

trical construction by a recursive procedure shows that the index α becomes a compound index, composed by single indices

i, i′ referring to the basic complex dimensions of the vector space.

A successive nesting of linear forms ηα:

η0 ≡ ξ0x
0 +

∑

k

ξkx
k = 0 (k=1 . . . ν) (13)

ηi ≡ ξ0x
i′ − ξix

0 +
∑

k

ξikx
k = 0 (14)

ηij ≡ ξix
j′ − ξjx

i′ +
∑

k

ξijkx
k = 0 (15)

ηijk ≡ ξijx
k′ + ξjkx

i′ + ξkix
j′ − ξijkx

0 +
∑

h

ξijkhx
h = 0 etc., (16)

leads to coefficients ξα with the single indices i, i′ agglomerated to ever higher nested compound indices α = ik1 ik2 . . .
reflecting the nesting status:

ξ0ξijk = ξiξjk − ξjξik + ξkξij (17)

ξ0ξijkh = ξijξkh + ξjkξih + ξkiξjh etc. (18)

The procedure leads to 2ν coefficients ξα that are addressed to be the components of the spinor ξ. In contrast to the components

of vectors the number of spinor components grows exponentially with the dimension as n = 2ν .

The index α of the spinor ξα hereafter is a compound of single indices that are related to the coordinate axes. A spinor

for ν = 2 is composed by 4 components (ξ0, ξ1, ξ2, ξ12); a spinor for complex dimension ν = 3 has 8 components

(ξ0, ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123) etc. Besides the single component ξ0 and the single indexed components ξi (i = 1, 2, . . . ν),
which formally ressemble the component structure familiar from vectors, spinors have additional components ξi1i2...ip (p =
2, . . . , ν). These have the property of either changing sign or being unaltered under odd or even permutations of the indices.

The spinor components are the same whether there is an unpaired dimension or not.

3.1.3. The defining equation of spinors

The recursive linear equation system eq.(13)- (18) defining the spinor components ξα in a space with isotropic vectors

x0, xi, xi′ (i = 0, 1, . . . ν) may be inverted to explicitly show up the spinor components as variables:

Xξ = 0 (19)

with X a 2ν × 2ν matrix and ξ a spinor with 2ν components with a definite sequence of the spinor components α 14 adopted.

X is called the associated matrix of the vector x.

Let the associated matrices of the isotropic basis vectors~e 0, ~e i, ~e i
′

be the matricesH0, Hi, Hi′ . Geometrically they represent

a reflection on the hyperplane that is perpendicular to the respective basis vector and contains the origin. Each vector x hence

may be represented by the associated matrix X decomposed in terms of reflection operators:

X = x0H0 + x1H1 + . . .+ xνHν + x1
′

H1′ + . . .+ xν
′

Hν′ (20)

14e.g. for ν = 3 : 0,1,2,3,12,13,23,123
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3.1.4. Totally antisymmetric p-vectors

Vectors are members of a set of totally antisymmetric objects that inhabit flat space. These objects called p-vectors consist

of the totally antisymmetric sum of products of the components of p vectors (C 15,83). Following Cartan we denominate the

associated matrix of a p-vector by X
(p)

. It is defined to be one for p = 0 and to represent the associated matrix X for p = 1.

The decomposition (20) illuminates the central role that reflections are playing in a representation based on spinors.

3.2. Towards a unified picture of interactions

3.2.1. The fundamental polar and its irreducible components

What makes this complex space attractive for physicists and indeed makes it become the foundation of a new realm of physics

is the appearance of a new entity, the fundamental polar

ξTCξ (21)

It consists of the product of two spinors mediated by a characteristic matrix C = (H1 − H1′) . . . (Hν − Hν′) built by

the reflection operators Hi, Hi′ . The fundamental polar remains unchanged under a rotation, but under a reflection it is

reproduced multiplied by (−1)ν . If ν is even this form is invariant under rotations and reversals. If ν is odd it changes sign

under a reversal.

Under rotations or reflections the fundamental polar is not irreducible. To decompose it into its irreducible components we

consider the tensor ξ′αξβ . By decomposing this tensor into irreducible representations a series of tensors Tp emerges

Tp = ξT
′

C X
(p)
ξ (22)

with X
(p)

denoting the associated matrix of an antisymmetric multivector of rank p.

These tensors are irreducible against rotations and reflections. Together they constitute the decomposition of the fundamental

polar into its irreducible components. For p = 0 we rediscover the fundamental polar.

Containing reflection operators the matrix C as well as the associated matrix X
(p)

make up the dynamical content of Tp
physicists are interested in.

3.2.2. Reflection operators acting as creation and annihilation operators

The reflection matrices obey the rules:

H2
0 = 1, H0Hk = −HkH0, H0Hk′ = −Hk′H0 (k 6= 0) (23)

HiHk = −HkHi, Hi′Hk′ = −Hk′Hi′ (24)

where the last equation for i = k means H2
i = H2

i′ = 0 15 . For the conjugate pairs we get:

HiHk′ +Hk′Hi = δik (25)

We may write the rules eq.(23)− (25) in the form of commutators:

[Hi, Hj ]+ = [Hi′ , Hj′ ]+ = 0 (26)

[Hi, Hj′ ]+ = δij (27)

showing that the H ′
i and Hi are creation and annihilation operators .

15It is helpful to know that H0 = HT
0 and Hi′ = HT

i .
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3.2.3. The action of reflection operators on spinor components

It is instructive to become familiar with the way reflection matrices unfold their annihilation and creation power on the spinor

components ξα (Cartan 1981,84).

• The operator Hi (i = 1, 2, ν) replaces by zero those components of ξα for which the compound index α includes the

simple index i, and adds this index to the ξα which do not already contain it; e.g. H3 transforms ξ45 into ξ453 and ξ23
becomes zero.

• The operator Hi′ makes zero those components ξα for which α does not contain an i and suppresses the index i in

those for which α does contain the index i which must first be brought to the last position in the compound index α;

for example H3′ makes ξ45 zero and transforms ξ134 = −ξ143 into −ξ14.

• We easily deduce thatHiHi′ξα results in ξα or zero depending on whether α does or does not contain i, and vice versa:

Hi′Hiξα is zero or ξα depending on whether α does or does not contain i. Thus (Hi′Hi −HiHi′)ξα results in − or +
ξα depending on whether α does or does not contain the single index i.

The reflection operators Hi, Hi′ thus transform one component of a spinor into another component.

3.2.4. Fundamental fermions identified with the components of one spinor

This is the mathematical base for the physical intuition to identify fundamental fermions with the components of one spinor.

The reflection operators then combine the destruction of one particle with the creation of another one. The Cartan tensors

Tp = ξT
′

C X
(p)
ξ (28)

by this identification get the status of interaction Hamiltonians. The interaction is effected by reflection operators acting as

creation and annihilation operators on spinor components. These tensors control the ratio in which particles represented by

spinor components are transmuted into one another.

3.3. Physical harvest

3.3.1. The emergence of the Clifford algebra and Dirac’s equation

Switching from an isotropic to the orthonormal system of real unit vectors (~e ir~e
k
r ) = δik we get the real equivalents Ar of

Hi, Hi′ . As an example we show the definition for ν = 2:

A1 = H1 +H1′ (29)

A2 = i(H1 −H1′) (30)

A3 = H2 +H2′ (31)

A4 = i(H2 −H2′) (32)

Using rules (23) till (27) we obtain the commutation rules

AiAk = −AkAi (i 6= k); (Ai)
2 = 1 (33)

These operators hence form a Clifford algebra (Cartan 1981,83).

The decomposition (20) in terms of real basic vectors then reads

X = x0H0 + xiAi (i = 1, . . . , 2ν) (34)

and the defining equation for spinors eq.(19) in a space with no unpaired coordinate becomes

Aix
iξ = 0 (35)
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Taking space to be the momentum space the defining equation for spinors eq.(35) reads

Aip
iξ = 0 (36)

For (ν = 2 viz. n = 4) this is the Dirac equation for a massless fermion

6p ξ = 0 (37)

with 6p = γµp
µ since the Ai like Dirac’s γ−matrices are defined to be the elements of a Clifford algebra.

The reflection operators Ai are the well known Dirac γ-matrices. The associated matrix P of a vector pµ corresponds to the

Dirac nomenclature 6p = γµp
µ. 16

Eq.(37) shows that the defining equation of spinors constitutes the familiar Dirac equation 17 in momentum space for massless

particles γµp
µψ = 0.

Far from being a postulate as it appeared when Dirac came up with his guess of the Clifford algebra to achieve relativistic

invariance of the electron’s equation of motion the Dirac equation for massless particles obviously is a basic feature of

Cartan’s geometric spinor theory 18.

We note that these particles necessarily are massless, since with Pξ = 0 we get 0 = PPξ = p2ξ = m2
0ξ. Before the advent

of the Higgs field also the fermions of the Standard Model were strictly massless.

3.3.2. Left- and righthanded classes of spinors

The reflection operator H0 operating along the unpaired dimension z0 that represents the extension from E2ν to E2ν+1

acquires a special role: Operating on a spinor ξα it gives

H0ξα = ±ξα (38)

depending on whether the compound index α contains an even or an odd number of single indices.

Let us concentrate onE2ν : we may order the spinor components according to first noting all components with even number of

subindices, followed by all components with uneven number of subindices. Then because all the reflection operatorsHi, Hi′

commute withH0, we can distinguish two groups of semi-spinors, which by rotation get transformed onto itself, representing

left-handed and right-handed spinors. For ν = 2 (E4) we get the semi-spinors of the first type (ξ0, ξ12) and of the second

type (ξ1, ξ2). For ν = 3 (E6) we get the first type to be (ξ0, ξ12, ξ13, ξ23) and the 2nd type to be (ξ1, ξ2, ξ3, ξ123).

The spinors in spaces with dimension n = 2ν hence decompose into two classes of semi-spinors whose components have

either an even or an odd number of single indices in their compound index. This decomposition is the mathematical basis for

the existence of two classes of either left-handed or right-handed fermions.

Any reflection Hi, Hi′ raises or lowers the number of single indices by one and thus transforms left-handed spinors into

right-handed spinors and vice versa. Any rotation then being composed of two reflections projects the members of one class

onto itself. This provides for the stability to consider it a class.

In the Standard Model it is considered a dominant feature that the experimentally found fundamental fermions are split

according to left- or right-handedness.

3.3.3. The emergence of different types of interaction

Automatically we are led to a series of interactions differing according to the dimension ν of the space the fundamental

particles are inhabiting. Being a combination of two spinors and a multivector X
(p)

these invariants display the characteristic

16For an explicit representation in configuration space see (C 134)).
17The introduction of a pseudo-euclidean metric does not change any of the conclusions made here. Cartan in detail unfolded the modifications to be

taken into account for the spaces E2ν+1 (C101) and E2ν (C123). He reproduced the Dirac equation (C134) as an example for the associated matrix of the

covariant vector ∂/∂x. Using real basis vectors the reflection operators for ν = 2 are shown to be identical wih the Dirac γ-matrices . Since there is nothing

new with respect to our topic we leave it to the interested reader to get all the information about necessary changes from Cartan’s book.

18In Diracs theory the concentration on the specific case n = 4 hides the fact that the spinor components in contrast to vectors obey an exponential

dependence 2ν on the space dimension
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form of Yukawa-type interactions familiar from the interaction Hamiltonians in the Standard Model. They obviously offer

the blueprint for the interaction Hamiltonians in the Standard Model. We conjecture that the interaction Hamiltonians of QFT

owe their exceptional status to the fact that they represent the fundamental Cartan tensors provided by complex flat space

within a specific dimension ν.

3.3.4. Parity violation

Switching to a base of unit vectors,A will indicate a reflection on the hyperplane π normal to the unit vector a. This operation

necessarily is two-valued since we could take either a or −a as the unit vector normal to π.

The effect of a reflection A on the associated matrix X and the spinor ξ is given by the formulae (Cartan 1938,85)

ξ′ = Aξ X ′ = −AX A X
(p)

′
= (−1)pA X

(p)
A (39)

Since any rotation by an angle θ may be represented by two reflections on hyperplanes that are tilted against one another by

an angle θ/2, the effect of a rotation taken as the product of an even number of reflections, S = A2kA2k−1 . . . A2A1 is given

by the formula

X
(p)

′
= S X

(p)
S−1; ξ′ = Sξ (40)

and for a reversal T we get

X
(p)

′
= (−1)pT X

(p)
T−1; ξ′ = Tξ (41)

where T is the product of an uneven number ≤ 2ν + 1 of matrices associated with unit vectors.

Taking into account these transformation properties and using the property of the matrix C (C89)

C X
(p)

= (−1)ν p+[p(p−1)/2] X
(p)

T
C (42)

we get the behaviour of the Cartan invariants Tp under reflections:

[Tp]′ = (−1)ν−p Tp (43)

Tp whence is a scalar if (ν − p) is even. It is a pseudoscalar if (ν − p) is odd (C91).

Some of the interactions Tp hence show the phenomenon of parity violation. One example is ν = 2 and p=1. Experimentally

parity violation has been found for the case of weak interactions, with (e,νe) and (u,d) the participating particles and the

intermediate vector field X
(p)

for (p=1) the vector boson field Wµ.

Parity violation whence is an intrinsic property of the spinor representation in complex flat space.

3.3.5. QED

Choosing ξ′ in Tp to be the complex conjugate spinor ξ′ = iCξ̄ we get (omitting the i) the expression (Cξ̄)TC X
(p)
ξ = ξ̄T X

(p)
ξ

since CTC = 1. The assignment

Hint = ξ̄T X
(p)
ξ (44)

with X
(p)

an associated matrix for p = 1 shows a striking similarity with the familiar expression ψ̃γµψAµ used for the

interaction term in QED, with γµAµ the associated matrix of the e.m. potential Aµ.

3.3.6. The overall set of experimentally detected fermions

For ν = 5 the 16 leptons and quarks which in the frame of the Standard Model get described as the 16+ spinor of SO(10)
(Wilczek 2006,242) may be neatly identified with the 16 components of the semispinor. They correspond to the fundamental

fermions ν, e, ur, ug, ub, dr, dg, db supplemented by their charge-conjugated counterpart, the antiparticles.

In his 2016 book Group theory in a nutshell for physicists Zee presents a realisation of the fundamental 16 fermions that is

compatible with the Standard Model, ordered by decreasing charge: e+, u, dc, ν, νc, d, uc, e− with the quarks u and d split

into the respective three colors.
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We may state that for ν = 5 the spinor components do provide for all the fundamental particles needed in the interactions of

the Standard Model.

ν = 5 corresponds to the real dimension n = 10. We may remind that n = 10 is the minimal number of flat dimensions

required to mimic the degrees of freedom inherent in the 10 components of the metric gµν of the 4-dim curved space invoked

in General Relativity (Edd 1923,149).

3.3.7. The expected occurrence of fundamental particles

Decomposed along handedness the fundamental fermions, leptons and quarks, get identified with the components of semi-

spinors. There are 2ν−1 semispinor components in a space of dimension ν:

ν = 1 2 objects: ξα = (ξ0, ξ1) (45)

ν = 2 4 objects: ξα = (ξ0, ξ1, ξ2, ξ12) (46)

ν = 3 8 objects: ξα = (ξ0, ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123) (47)

and so on.

For the moment we will not make any assignment of individual fermions to spinor components since the current experimental

knowledge is strongly coined by an analysis in terms of rotations SU(2) and SU(3). We have available the sets (e, νe)
and (u, d) participating in weak interactions and the sets (ur, ug, ub, dr, dg, db) participating in strong interactions each

complemented by their charge conjugate. The characterization as weak and strong is referring to an analysis in terms of the

generators of SU(2) and SU(3). We did not undertake the translation to a representation in terms of reflection operators nor

did we handle the topos of charge conjugation.

3.3.8. ν = 4 : The phenomenon of triality

For ν = 4 the isotropic vector and the two semi-spinors have an equal number of components (eight). This leads to the

phenomenon of triality described extensively by Cartan (C 119). Each type of semi-spinors has a quadratic form which is

invariant with respect to the group of rotations, namely

ξ0ξ1234 − ξ23ξ14 − ξ31ξ24 − ξ12ξ34 ≡ φTCφ for semi-spinors of the first type (48)

ξ1ξ234 − ξ2ξ134 − ξ3ξ124 − ξ4ξ123 ≡ ψTCψ for semi-spinors of the second type (49)

We follow Cartan: We have three spaces each of eight dimensions, that of vectors, that of semispinors of the first type and

that of semi-spinors of the second type, each having a fundamental quadratic form and in which there are three groups of

operations which are the same overall , but with two to two correspondences which are not one-one, since to an operation in

one of them there correspond two distinct operations of the others. These three groups, considered as acting simultaneously

on vectors and on the two types of semi-spinors form a group G which leaves invariant the trilinear form F = φTCXψ and

the three quadratic forms F ≡ x1x1
′

+ x2x2
′

+ x3x3
′

+ x4x4
′

,

Φ ≡ φTCφ and

Ψ ≡ ψTCψ.

The groupG can be completed by five other families of linear substitutions which leave the form F invariant and interchange

the three forms F,Φ,Ψ. The operations of each of these new families gives a definite permutation of the three sorts of object,

vectors, semi-spinors of the first type and semi-spinors of the second type.

There thus is in the geometry of eight-dimensional, Euclidean space about a point, a principle of triality with three types of

objects which play exactly the same role (C120).

We conjecture this triality to be the reason for the three generations observed for elementary particles 19.

————————————————————————

19The objections of Zee against a derivation of the three generations from triality in our opinion don’t apply. They are based on the group theory of unitary

transformations which in general have no spin representations (Zee,2016)
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3.4. Two ways to trace the physiognomy of complex flat space

3.4.1. The Standard Model: A hybrid of reflections and rotations

The Standard Model of elementary particles is a hybrid of a base layer of spin-1/2-semi-spinors each representing a postulated

elementary fermion (see App.B,p.50). These semispinors are embedded in a layer of vector representations of the complex

rotations U(1), SU(2), SU(3). Three sets of generators contract into the vectors. The generators play the role of bosons

mediating the interaction between the semispinors.

Two characteristic features make the representation based on Cartan distinct from the Standard Model:

(i) the fermions emerge from the space concept instead of being objects postulated externally and added to the space they

move in. This means that the Newtonian view that takes matter as external and autonomous against the space it moves in will

be discarded.

(ii) reflection operators as natural ingredients of a representation based on spinors take over the role of bosons that the

generators of rotations have been acquired in the Standard Model.

3.4.2. Truncated equivalence of rotations and reflections

For QED the use of Dirac gamma-matrices was convention. But when extending to include weak interactions, parity violation

for right-handed semi-spinors seemed to require another interaction pattern than for left-handed semi-spinors. The strategy

became to handle all interactions on a semi-spinor base. This meant to use σ- instead of γ-matrices. Both still represented

reflection operators. But the Cartan reflection operators σi are identical with the generators of SU(2) 20. With respect to

SU(2) we thus find an equivalence between a representation using reflection operators and rotation generators.

A far reaching shift in interpretation appeared when interpreting the σi to be generators of SU(2) 21 instead of reflection

operators built up from Cartan’s Hi, Hi′ .

The formal equivalence of a representation in terms of spin matrices or a representation by generators of rotations ends for

SU(3) and higher symmetries. The generators of SU(n) are n2 − 1 matrices with dimension n. The elementary objects are

thus to be represented by vectors of dimension n which the generators contract into. The dimension of spinors according to

the geometrical definition of Cartan but grows with 2ν . There is no room for a spinor of dimension 3. What for a dimension

two appears to be an isomorphism between the vector representation of SU(2) and a spinor representation for ν = 1 or a

semi-spinor representation for ν = 2 fades away for higher dimension. There is no straightforward correlation between the

Cartan dimension ν and the symmetries SU(ν).

Generalized gauge invariance then served as a guide to collect U(1), SU(2) and SU(3) under the same roof representing ex-

tensions of the translation generator ∂µ
22. These rotations determine the apperception of the Standard Model as representing

SU(3)c⊗ SU(2)⊗U(1)Y . The representation in terms of generators captured the interpretation of the Standard Model with

far reaching consequences for the interpretation of objects.

3.4.3. Revitalizing the Newtonian view of matter in space

Although expected to be mostly equivalent because a rotation is equivalent to two reflections a gap exists in interpretation

between the Standard Model based mostly on rotations and a concept - we call it SMC - based on flat space defined by

reflections.

Leaving reflections and spinors confined to the basement and installing on top a layer in terms of generators of rotations

contracting into vectors induced a far-reaching shift in interpretation of the Standard Model. Representing fermions as being

20An infinitesimal SU(2)-transformation around the identity S = E − idxiσi is featuring the generator σi embedded into a spin matrix dxiσi (Tung

2003,127).

21Rotations in 3 dimensions may be written as = ei
θ
2
~n~σ where ~n denotes the rotation axis. The representation of rotations by reflection operators is the

unique way to make the law of group multiplication of rotations transparent:

S3S2S1 = ei
θ3
2

~n3~σei
θ2
2

~n2~σei
θ3
2

~n1~σ (50)

where ~n1, ~n2 ~n3 are the rotations axes of three subsequent rotations.
22This led to the dominance of (p = 1) vector- instead of multivector representations of bosons in the Standard Model.
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components of vectors contracting into generators of rotations denies the emergence of particles from the space concept. They

become particles that exist in space supporting the Newtonian view of matter.

3.4.4. SMC: The objects emerge from the space concept

One of the essential advantages is the emergence of objects from the space concept when using a representation based on

reflections. This feature gets lost when the theory gets based on rotations. Then we are dealing with ad hoc objects moving

autonomously inside a space reproducing the Newtonian view of matter. Lets have a closer look at the Standard Model:

The Standard Model is featuring a representation in terms of complex rotations (unitary transformations). It is built up by a

basic layer of 2-dim semi-spinors each representing a basic quark or lepton. Introduced ad hoc they are grouped into vector

components which the generators of U(1), SU(2) and SU(3) are contracting into. This allows the parity violation observed

for SU(2) to be accounted for explicitly. The 2-dim semispinors representing the fundamental particles appear to be added

ad hoc to become the addressee of the generators of unitary symmetries which as well get postulated ad hoc. Under this

predominance of rotations the emergence of objects and of their interactions from the space concept gets lost. The particles

as defined in the Standard Model by rotations appear to exist in flat space in complete autonomy independent of this space

just as Newton’s matter did.

Spinors in the view of Cartan are the parameters that are necessary to span a space by isotropic vectors. These are the natural

complex counterpart of the unit vectors in real space. The recursive law that determines the nested construction of their indices

perfectly well matches the occurrences of leptons and quarks in powers of two. Moreover: the existence of classes of left- and

right-handed particles turns out to reflect the ambiguity of the direction of the normal to a hyperplane in complex space.

The condition of the possibility to measure given by the recursive law that guarantees the spinors to constitute isotropic

vectors of length zero when inverted to make manifest the spinor components constitutes the equation of motion. Switching

to real space with four dimensions this is the Dirac equation for massless fermions.

The Cartan invariant ξTC X
(p)
ξ consisting of the product of two spinors with the associated matrix of a multivector provides the

equivalent of the Yukawa form of the interaction Hamiltonians postulated in the Standard Model. The experimentally found

split into an e.m., a weak and a strong interaction in the SMC is mirrored by representing the Cartan invariant in complex

spaces of different dimension ν with the resp. spinors having 2ν components. The objects in the SMC show the generic

sructure imposed by the spinor components: they appear in powers of 2ν . Indeed we have the electron and the positron

(e+, e−) as the material base of the e.m. interaction. We have the leptonic and the quark pairs (e, ν) and (u, d) as the material

base of weak interactions.

Strong interaction is not as easily conceivable since there is no natural place for (ur, ug, ub), (dr, dg, db) besides hypotheti-

cally appearing as components of the spinor 16+.

3.4.5. The new role of bosons

There is an important difference between the interaction Hamiltonians of the Standard Model and the Cartan invariants. What

are called bosons in the Standard Model are the generators of complex rotations U(1), SU(2), SU(3) that act as ladder

operators, whereas in the latter case the associated matrices of multivectors, viz. reflection operators, appear instead. Only for

U(1) there is a coincidence of both. But in general the analysis in terms of rotations will deliver another pattern as an analysis

in terms of reflections.

What we might call bosons in this mathematical representation are no more the generators of rotations but the associated

matrices of p-vectors X
(p)

, that reside in 2ν-dimensional flat space. The role of ladder operators, viz. creation and annihilation

operators that the generators of rotations play in the Standard Model and that essentially determine them to be the mediator

of an interaction, in the new reflection determined picture gets overtaken by the reflection operators Hi, Hi′ . They act as the

creation and annihilation operators that mediate the transition between the components of spinors.

This means that the calculations and Feynman diagrams no longer can refer to intermediate bosons represented by the ge-

nerators of SU(2) and SU(3) with all the useful support from generalized gauge invariance. These rotations could be used

in the Standard Model because the Lagrangian has been conceptualized as a hybrid consisting of a lower layer describing 2-

component spinors introduced arbitrarily for every particle taking part in the game and an upper layer where these spinors are

made to become the components of vectors the generators are contracting into. A detailed analysis of the Standard Model is

given in app.B, p.50 exposing its hybrid nature consisting of a basement of 2-dim semi-spinors, with a layer on top consisting
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of vectors defined by rotations.

Our conjecture would mean to replace the hybrid representation of fundamental particles in terms of 2-component spinors

addressed by the generators of SU(2) and SU(3) by a representation based on one spinor inhabiting the space of dimension

ν in which the interaction takes place.

Following Cartan every rotation about an angle θ is equivalent to two reflections on hyperplanes tilted against each other by

an angle θ/2. The two representations whence should be equivalent. The practical and theoretical unfolding of the Standard

Model made progress along a path driven by the symmetries SU(2) and SU(3). In our opinion there can be no doubt that

there is an equivalent path driven by reflections leading to an equivalent experimental verification of a new kind of bosons

appearing in the experimental data. 23

3.4.6. Both Models trace the physiognomy of complex flat space

We conjecture: Bosons may be identified with either the generators of rotations or with p-vectors.

Anyway: what we discover is that the Standard Model with all its ramifications is tracing the physiognomy of a complex flat

space characterized by the existence of isotropic vectors and by a set of parameters called spinors guaranteeing this space to be

spanned by these isotropic vectors. The representation in different dimensions ν is responsible for the split of the interactions

into different types mimicking some equivalent of the e.m., weak and strong interaction.

We know that the Standard Model whose interactions are built up by layers of rotations from general reasons must be com-

patible with a representation built up by spinors only, because every rotation may be replaced by two reflections.

We thus conjecture that the Standard Model which is based on a layer of rotations should be equivalent to a model - we call

it SMC - in which the experimental findings get identified with the respective elements of the spinor structure of flat space as

presented by Cartan. Dependend on the theoretical frame bosons experimentally will be identified with either the generators

of rotations or with p-vectors.

What we conclude is that the Standard Model with all its ramifications is tracing the physiognomy of a complex flat space

characterized by the existence of isotropic vectors and by a set of parameters called spinors guaranteeing this space to be

spanned by these isotropic vectors. We conjecture that the representation in different dimensions ν is responsible for the split

of the interactions into different types mimicking an e.m., weak and strong interaction.

At this point then our task of proving that the conjecture of Eddington for General Relativity is valid for Elementary Particle

physics 24 as well may be taken for granted. Elementary particle physics traces the physiognomy of flat space when this space

is taken to be complex and when the elementary particles are identified with the components of spinors.

In case of elementary particle physics the concept of complex flat space as defined by Cartan is encoding the condition of the

possibility to measure by providing the new invariant. What we observe experimentally are the Cartan invariants and their

intrinsic mechanism of creation and annihilation of spinor components which we metaphorically call fundamental particles

and which we erroneously equipp with an autonomous existence in Nature.

The space concept is providing the objects, viz. the fermions, as well as their interactions. Theory and experiment seem to do

nothing but tracing the physiognomy of the so defined space. The consistency of the space concept provides the invisible hand

that guides experiments to find the inherent structure of this space concept described as to represent fundamental particles. 25

In each case whether we are using a representation in terms of rotations like the Standard Model or - more refined - in terms of

reflections we may conjecture the Standard Model of elementary particle physics to be tracing the physiognomy of a complex

flat space concept with all its ramifications.

Elementary particle physics in our opinion is providing the best support for the conjecture of Eddington. There can be no

doubt that theory and experiment of elementary particle physics trace the physiognomy of flat space unfolded by Cartan long

before any idea of a consistent notion of elementary particles did exist. 26

For the aim of our paper it is enough to conclude that the Standard Model of elementary particle physics whether exploited

23The practical task to construct this representation by reflections will not be achievable without an intense collaboration with the experience of experi-

mentalists as was the case for the development of the SU(2),SU(3) picture favoured in the Standard Model.
24at least concerning the successes of QED
25We leave it for another task to determine the precise correlation of how the components of the spinors that take part in a specific interaction are related

to the generators of rotations.
26We should keep in mind that the mathematical concept of a complex flat space represented by reflections has been elaborated by Cartan in 1938, i.e. at

a time when not even the slightest notion existed of to what systematics the existence of myons, electrons, protons, neutrons and neutrinos could hint.

21



by reflections or rotations is tracing the physiognomy of complex flat space.

4. Electromagnetism

4.1. Maxwell’s equations trace the antisymmetric bivector of flat space

How identification works in practice most easily can be seen by inspecting the example of Maxwell’s electromagnetism:

The century long efforts of Faraday, Ampère and other physicists to obtain a correct theoretical and experimental description

of electromagnetic phenomena found its concise summary in Maxwell’s eigth equations. They may be grouped into four

homogeneous equations:

rot ~E = −∂t ~B (51)

div ~B = 0 (52)

and four inhomogeneous equations:

rot ~B = ∂t ~D +~j (53)

div ~E = ρ (54)

These equations traditionally are taken to expose laws of Nature that by the efforts of these scientists luckily have been

discovered. Eq.(51) is called Faradays law of induction; eq.(52) is stating the law that in the world described by Maxwell’s

electrodynamics no magnetic monopoles are existing; eq.(53) is called Ampere’s circuital law (supplemented by Maxwell’s

displacement current); eq.(54) states the charge density to be taken as the source of electric fields.

The special relativistic presentation in terms of the bivector Fµν of flat space reveals that the experimentalists were led to

choose the polar component of the bivector as a reference variable that allowed for an appropriate description of what they

measured. Calling it an electric field ~E they soon had to admit that in a complicated fashion it was accompagnied by another

field named a magnetic field ~B which showed axial character. What they had detected was the axial component of the bivector.

The experimental results forced them to notice a strange relation imposed on these two physical fields: the equalness of the

square of their amplitudes and their orthogonality. What is a mathematical feature of the polar and axial components of the

bivector appeared to be a condition imposed by Nature on the physical fields.

The special relativistic formulation in terms of the antisymmetric bivector Fµν of flat space then leads to the astonishing

result, that the homogeneous Maxwell equations express nothing but an identity obeyed by the mathematical bivector:

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0 (55)

Eq.(55) describes an identity as soon as the bivector Fµν is guaranteed to represent an antisymmetric gradient.

Fµν = ∂νAµ − ∂µAν (56)

The inhomogeneous Maxwell equations then are seen to express how to identify the measuring entity, the electrical current

density Jµ, in terms of the space variables contained in Fµν .

∂νF
µν = Jµ (57)

Maxwell’s equations in total thus reduce to the requirement

Fµν = ∂νAµ − ∂µAν (58)

stressing the antisymmetric character of the bivector combined with the identification of the measured currents in terms of

the bivector

∂νF
µν = Jµ (59)

The requirement Fµν = ∂νAµ − ∂µAν is necessary and sufficient for requiring Fµν to be antisymmetric. This requirement

defines ~B to be purely rotational, ~B = rot ~A, and hence automatically guarantees div ~B = 0. Thus in spite of the fact that

theories may be constructed to enforce the existence of magnetic monopoles, the representation in terms of the antisymmetric

bivector of flat space is conditioning the non-existence of magnetic monopoles. This is not a law of Nature.
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The experimentally as well as theoretically required supplement of Ampere’s law, eq.(53), by Maxwell’s displacement current

is a prominent example of how consistency might determine what we will measure.

Maxwell’s equations provide a perfect example of how the combined experimental and theoretical efforts of Faraday, Ampere

and other famous physicists in effect resulted in tracing the bivector of flat space. What appeared to be laws of Nature turned

out to describe properties of the bivector. Consistency is not only determining the theoretical picture. It also determines what

we are measuring. This way theory will get consistent with observations.

4.2. The quest for a pseudo-euclidean metric

4.2.1. The bivector components to become measurable entities require a pseudo-euclidean metric

The most pronounced example of a mutual conditioning between the space concept and the emergence of objects is given

by the bivector of flat space. Till now in all cases we observed the predetermination of the respective objects by the space

concept. The electromagnetic field F emµν offers an example that this is not a one-way street.

It turns out that the wish to identify the polar (x14, x24, x34) and the axial components (x23, x31, x12) of the bivector of flat

space with real electric (E1, E2, E3) and magnetic (B1, B2, B3) fields may be satisfied only when spacetime is endowed

with a pseudo-euclidean metric. The structure of the space concept hence gets influenced by the way we want to identify the

electric and magnetic fields.

This to show we switch to the spinor representation of Cartan. To represent the space of SRT we have to start with ν = 2
and switch to real coordinates. The 4x4-spin-matrix of the bivector then decays into two 2x2-matrices Ξ

(2)
and Σ

(2)
(Cartan

1981,126). Since the bivector is isotropic the determinants of these two matrices have to be zero.

This leads to two constraints on the bivector components which expressed in contravariant coordinates read (Cartan 1981,126):

det Ξ
(2)

= (x12 + x34)2 + (x31 + x24)2 + (x23 + x14)2 = 0 (60)

det Σ
(2)

= (x12 − x34)2 + (x31 − x24)2 + (x23 − x14)2 = 0 (61)

Subtracting the two equations leads to the condition that the polar field x14, x24, x34 and the axial field x23, x31, x12 have to

be orthogonal to each other:

x14x23 + x24x31 + x34x12 = 0 (62)

which easily gets identified with the familiar restriction

~E · ~B = 0. (63)

By adding both equations we but get the unsatisfiable condition

(x23)2 + (x31)2 + (x12)2 = −[(x14)2 + (x24)2 + (x34)2] (64)

translating to | ~B|2 = −| ~E|2 which to fulfill is impossible.

There s a way to avoid this inconsistency. Spacetime has to be endowed with a pseudo-euclidean metric. By postulating

x4 → −icx4 = −ict the bivector components transform to become

x14 → −icx14; x24 → −icx24; x34 → −icx34 (65)

leaving us with the constraint

c2((x14)2 + (x24)2 + (x34)2) = (x23)2 + (x31)2 + (x12)2 (66)

which then leads to the restriction physicists are familiar with:

c2| ~E|2 = | ~B|2 . (67)

Cartan: ”An interpretation of this sort in terms of a real image is possible in the space of special relativity only, but not in real

Euclidean four dimensional space.”(Cartan 1981,132)

The two restrictions eq.(63) and eq.(67) familiar for the electric and magnetic fields hence are rooted in the properties of the

bivector of flat space.
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4.2.2. Getting a relativistic representation

The electromagnetic tensor F emµν is defined to be

F emµν =









0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0









(68)

The electric and the magnetic field appear to be the polar and axial components of this bivector. Under the condition of a

pseudo-euclidean metric we are able to identify the experimentally determined electromagnetic tensor F emµν with the antisym-

metric bivector Fµν residing in flat space. For this bivector an identity relation is valid:

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0 . (69)

As soon as we require the electromagnetic tensor F emµν to be antisymmetric by postulating F emµν = ∂νAµ − ∂µAν (Aµ =

(Φ/c, ~A) we may identify the four homogeneous Maxwell equations within eq.(69). Indeed we may replace the four homo-

geneous Maxwell equations by eq.(69) combined with the additional requirement F emµν = ∂νAµ − ∂µAν (Aµ = (Φ/c, ~A) to

guarantee its antisymmetric character.

The four inhomogeneous Maxwell equations in the relativistic notation then get represented by

∂νF
µν = Jµ (70)

saying that the covariant variables of the space concept as compiled in the bivector Fµν get identified with the contravariant

measuring entities compiled in the relativistic current density Jµ = (cρ,~j) 27:

∂νF
µν = Jµ (71)

The historical efforts of Gauss, Faraday, Ampere and Maxwell hence flowed into tracing flat space by its antisymmetric

bivector.

4.3. Electromagnetism and matter

Physicists by checking and organizing experiments in a specific realm of physics are investigating the adopted space concept

that they don’t know yet and even without being aware of what they are doing: highlighting details of this space concept.

This space concept provides the relations they detect between the experimental outcomes and that guarantees the logical

consistency of these relations.

The mathematical bivector experimentally appeared in form of an electric and magnetic field to be identified with its polar

and axial components. The electromagnetic field Fµν indeed is this bivector whose properties are described by Maxqwell’s

equations. In Maxwell’s equations these fields get coupled to charged currents. The resulting panorama in physical terms is

called Maxwell’s electromagnetism. It combines the electromagnetic field with a current whose nature but appeared obscure.

Currents are the way how matter appears on stage. They are made out of electrons. But how to describe these electrons?

4.3.1. Bifurcation: the symmetrical and antisymetrical sector of the space concept

In Coulombs electrostatic theory the electron appeared as a point source with a charge Q the sole pattern of recognition. The

underlying space concept, the flat space of classical physics, constituted by the quadratic form that represented invariance

against translations and rotations, did not seem to provide any structure to be attached to the electrons. The experiments but

detected a till then hidden sector of this space concept opened by the generators of the Lie groups that constituted these

classical transformations. Quantum Mechanics for the first time branded the electrons with an existence at its own, identified

with wave functions, i.e. the vectors of the Hilbert space spanned by the Eigenfunctions of the generators. The electrons

appeared as being a representation of the mathematical support of the generators of translations and Galilei transformations.

27taking into account the two restrictions eq.(63) and eq.(67)
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The recursive procedure defining spinors when reversed to expose explicitly the spinor components turns out to be the Dirac

equation now believed to be the equation of motion of the electrons that physicists extracted from their experiments before

spinors appeared on stage as a fundamental antisymmetric element of the space concept.

Physicists first came into touch with an antisymmetric sector of the space concept by the kind of experiments summarized in

Maxwell’s electromagnetism. Maxwell’s theory is based on the mathematical structure provided by the bivector which covers

Maxwell’s electromagnetic fields coupled to the hitherto unresolved currents by the Cartan invariants.

The antisymmetric derivative of the bivector physically appears as the electromagnetic potential Aµ. When sandwiched with

two spinors it provides the fundamental polar, a mathematical invariant whose first irreducible component provides for what

physicists call the electromagnetic interaction: the two spinors perform as a current density jµ, which in physical terms

interacts with the electromagnetic potential.

By the discovery of an antisymmetric sector of the space concept containing spinors and the newly detected invariants offered

by the irreducible components of the fundamental polar a new horizon got opened announcing elementary particle physics.

The theory of spinors unfolded by Cartan became the mathematical base of the experimental results compiled in the Standard

Model of Elementary Particle Physics.

The elementary particles appearing in the experiments are to be identified with the components of spinors. Their equation of

motion turns out to be the reverse of the defining equation of spinors. Their interactions reflect the irreducible components of

the fundamental polar. One of those particles is the electron.

This discovery paved the way to recognize Maxwell’s theory as an integral part of elementary particle physics with the electron

being the instance of leptons, the e.m. field the instance of an intermediary boson and the e.m. interaction the instance of the

Cartan invariant in ν = 2 complex dimensions.

4.3.2. Matter in higher dimensions

The extention of space to higher dimensions gives birth to higher spinor components experimentally identified as leptons and

quarks where the electrons were an early example of leptons. In every higher dimensional space the irreducible components

of the fundamental polar give rise to new invariants, physically interpreted as new interactions between leptons and quarks in

a rough correspondence to the weak and the strong interactions.

This correspondence may not be firmly established before we have evaluated the relation between a representation in terms

of generators of rotations SU(2) and SU(3) against a representation in terms of reflection operators.

Finally particles will simply appear as a bump in a probability distribution.

5. Quantum mechanics

The following presentation is taken from the book of Josef M.Jauch, Foundations of Quantum Mechanics 28, 1968.

5.1. The condition of the possibility to measure

Jauchs axiomatic approach to Quantum Mechanics is deeply rooted in measure theory. The central question to be answered

is: how can a state of a system be measured?

Physically every measurement may be described by a set of yes-no experiments. The results of these experiments constitute

a projection-valued spectral measure.

One of the most important problems in measure theory is to identify the class of measurable functions over a measure space

(S,M, µ).

If the measure space S is the real line, M are the Borel sets, and µ the Lebesque measure then the integral function
∫

dµ =
Σni=1αiµ(Ai) is called the Lebesque integral

∫

f(x)dx. Similarly the Lebesque-Stieltjes-Integral is obtained, if we define the

measure corresponding to some non-decreasing function µ(x). We write for this integral
∫ +∞

−∞
fdµ(x).

The set of all complex, square integrable functions on a measure space (S,M, µ) is a linear manifold denotedL2. If we define

a scalar product (f, g) =
∫

f∗gdµ this manifold is called a Hilbert space. It is the basic mathematical object for Quantum

28We try to avoid mathematical subtleties, that tend to obscure the perspecuity of the derivation. Interested readers may consult the original book.
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Mechanics, essentially defined by the requirement to allow for measurement.

5.1.1. yes-no experiments and the propositional calculus

In order to constitute a physical object physicists have to perform a series of experiments which then in their ensemble will

be a full operational equivalent to the constructed object. There are properties which depend on the state and there are others

which characterize the system and which are therefore independent of the state.

Jauch introduces a particular kind of experiment called yes-no experiments; these are observations which permit only one of

two alternatives as an answer. Every measurement on a physical system can be reduced, at least in principle, to measurements

with a certain number of yes-no experiments (channel analyzer). The yes-no-experiments are referred to as propositions of a

physical system.

Between certain pairs of propositions there exists a relation which is expressed as e.g. a ⊂ b; meaning: whenever a is true,

then b is true, too. What is important for us is that this relation is independent of the state of the system. It is the desired

structural property which expresses a property of the system independent of its state.

Jauch in axiomatic form presents the structure properties of the propositions of a physical system which are independent of

the state. Jauch: The propositions of a physical system are a complete, orthocomplemented lattice. The structure of this lattice

will be independent of the state of the physical system; the lattice describes the intrinsic structure of the system. 29

5.1.2. The concept of localizability

The physical concept of localizability in a natural way leads to a spectral measure over the real line Λ.

Taking space represented by Borel sets ∆ the propositions locating a particle in various domains ∆ of physical space may be

represented by a projection-valued measure ∆ → E∆, that fulfills the following conditions

E∆1 ∩ E∆2 = E∆1∩∆2

E∆1 ∪ E∆2 = E∆1∪∆2

Σ∞
n=1E∆n

= E∪∞

n=1∆n
for any seqence of disjoint sets ∆n

E∆′ = E′
∆

′ denoting the complementary set

(72)

Every spectral measure defines a self-adjoint operator. Stones theorem tells us that every unitary one-parameter group Vβ
30

defines a unique spectral measure such that

Vβ =

∫ +∞

−∞

eiλβdEλ (73)

The self-adjoint operator defined by the spectral measure eq.(72), the generator of the group, is called the position operator

Q (Jauch 1968, 197). We may then write eq.(73) equivalently

Vβ = eiβQ (74)

The one-to-one correspondence of the spectral measures on the real line to self-adjoint operators permits to replace one by

the other.

5.1.3. The canonical commutation relations represent localizability within a homogeneous flat space

The concept of localizability and the homogeneity of flat space are the key ingredients that constitute the canonical commu-

tation relations. 31

Two of the basic requirements put on flat space are its homogeneity and isotropy. Both of these properties express the demand

that this space should have no observable physical properties. This means that different points in this space are indistinguis-

hable.

29For mathematical subtleties the reader is referred to the Book of Jauch, 1968.
30for which (f, Vβg) is a continuous function in β for all f, gǫH
31In this section we will follow closely Jauch’s nomenclature and derivation.
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For sake of simplicity let us assume a one-dimensional space. For a particle moving in this space homogeneity may be

expressed by requiring that a translation of the space Λ by an arbitrary amount α will induce a symmetry transformation in

the proposition system (72)(Jauch 1968,197). Following Jauch we introduce the notation [∆]α for the Borel set ∆ translated

as a whole by the amount α.

Demanding the space Λ to be physically homogeneous means to require that there exist unitary operators Uα such that

E[∆]α = U−1
α E∆Uα (75)

This relation ”is fundamental. It is the precise mathematical expression of the notion of localizability in a homogeneous

space” (Jauch 1968,198). It constitutes the base of the canonical commutation rules.

The as yet undefined phases of Uα may be chosen in such a way that they form a continuous vector representation of the

additive group of real numbers

UαUβ = Uα+β (76)

According to Stone’s theorem, such a group uniquely determines a self-adjoint operator P :

Uα = eiαP (77)

P is called the displacement operator.

Applying the displacement Uα to eq.(73) we get

UαVβU
−1
α =

∫ +∞

−∞

eiβµd(UαEµU
−1
α

=

∫ +∞

−∞

eiβµd(Eµ−α)

=

∫ +∞

−∞

eiβ(µ+α)d(Eµ)

= eiαβVβ

(78)

or

UαVβ = eiαβVβUα (79)

This is the canonical commutation rule in Weyl’s form.

We can throw the canonical commutation rule (79) into still another form by expressing it in terms of the generators of the

unitary groups.

The generator P is defined on all vectors f for which the limit

limα→0
1

iα
(Uα − I)f = Pf (80)

exists, while Q is defined for the vectors f which admit the limit

limβ→0
1

iβ
(Vβ − I)f = Qf (81)

From these definitions and eq.(75) we easily obtain the commutation rule 32

[Q,P ]f = if for all fǫD (82)

The notion of localizability in a one-dimensional homogeneous space in a natural way hence leads to a pair of self-adjoint

operatorsP andQwhich on a dense subsetD of the entire Hilbert space satisfy the canonical commutation rule [Q,P ]f = if
for all fǫD 33. Only with these restrictions in mind we can write the formula

[Q,P ] = iI (83)

known as the canonical commutator.

32rg: richtig geschrieben, in Gegensatz zu Bohr im Vorspruch.
33In order to give this equation a meaning, we must have QfǫDP and PfǫDQ, where DQ and DP are the domain of Q and P respectively. The domain

D of such vectors f is elsewhere dense and the restriction of Q or P to D is essentially self-adjoint. The spectra of P and of Q are absolutely continuous.
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5.2. Switching to dynamics: the Galilean transformation

5.2.1. The evolution in time

In the Schrödinger representation a time displacement operatorU(t, t0) may be defined by Ψt = U(t, t0)Ψt0 where Ψt is the

state of the system at time t. Demanding U(t, t0) to be unitary an infitesimal time displacement reads

U(t0 + δt, t0) = 1− iHδt (84)

where the time displacement operator H has to be hermitian to guarantee U to be unitary. The evolution in time is then

described by the Schrödinger equation

iΨ̇t = H Ψt (85)

Let A be any observable not depending explictly on time. We can define a velocity of A, denoted by Ȧ, by requiring that for

any state Ψt
d

dt
(Ψt, AΨt) = (Ψ0, ȦΨ0) (86)

It follows from this definition that for every Ψ = Ψ0

i(Ψ, [H,A]Ψ) = (ψ, ȦΨ) (87)

or

Ȧ = i[H,A] (88)

In particular choosing for A the position operator Qr we may define the velocity

Q̇r = i[H,Qr] (r = 1, 2, 3) (89)

It is only defined if H is known. The Q̇r thus defined are observables and their expectations values can be measured.

5.2.2. Combining translations and Galilean transformations

If an observer O has measured the observable Q̇r and has found a value αr then an observer O′ in relative motion with

velocity vr wkill observe the value αr + vr. The connection between both systems is given by the Galilei-transformation

Qr → Qr, Q̇r → Q̇r + vr (90)

The system is defined to be Galilei-invariant if this transformation is a kinematical symmetry, that is, if there exists a unitary

operatorGv which commutes with Qr and for which

GvQ̇rG
−1
v = Q̇r + vr (91)

Let us determine the displacement operatorsH which are admitted by particles satisfying Galilei-invariance. 34

If we combine the Galilei-transformation eq.(90) with the displacements, we obtain a six-parameter group of translations. We

define the family of unitary operators W (α,v) with the properties

Qr + αr =W (α,v)QrW
−1(α,v) (92)

Q̇r + vr =W (α,v)Q̇rW
−1(α,v) (93)

It follows from this that the W (α,v) are a projective representation of the six-dimensional vector space

W (α1,v1)W (α2,v2) = ω(α1,α2;v1,v2)W (α1 +α2,v1 + v2) (94)

According to the general theory of such representations it is possible to determine the as yet arbitrary phase factors of W in

such a way that the factor ω in (94) assumes the form (Jauch 1968,207)

ω(α1,α2;v1,v2) = ei(µ/2)(α1v2−α2v1) (95)

34we do this under the assumption that we are dealing with an elementary system, so that the position operators Qr generate a maximal abelian algebra.
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µ is an arbitrary real constant which is 6= 0 and which distinguishes the different inequivalent projective representations of

the two-dimensional translation groups.

The two one-parameter subgroups Uα and Gv are recovered by specializing the parameter values according to

Uα =W (α, 0) G−1
v =W (0,v) (96)

For these two subgroups, the relation (94) becomes

UαG
−1
v = eiµαvG−1

v Uα (97)

By comparing this with eq.(91) we see that (1/µ)Pr and Q̇r have the same commutation rules with Gv. Their difference

commutes with Gv; thus it must be a function of the Qr alone. Hence we find the important relation

µQ̇r = Pr − ar (r = 1, 2, 3) (98)

where ar(Q) are three functions of Q1, Q2, Q3 which may depend explicitly on time.

From the relation (98) we obtain the commutation rules

µ[Qr, Q̇s] = iδrs (99)

We define the operator H0 = (µ/2)Q̇2 which then satisfies

i[H0, Qs] = Q̇s (100)

Consequently, in view of (89) the differenceH −H0 commutes with Qs, hence it must be a function v(Q) of the Qr, which

may even depend on time.

The evolution operatorH then must have the form

H =
1

2µ
(P − a)2 + v (101)

We may summarize: Every localizable elementary physical system which satisfies Galilean invariance in the sense of (91)

evolves in time according to Eq.(85) withH as given by Eq.(101) 35. This corresponds to the Schrödinger equation in covariant

notion.

5.3. The crucial step of identification

We have found that the canonical commutator, [Q,P ] = i I , eq.(83), and the time evolution operator eq.(101) are the direct

consequence of the requirement of localizability and homogeneity imprinted on the covariant variables Q,P , H).

These relationships are derived entirely within the classical framework of a space concept which is defined by

• localizability, expressed by projection-valued spectral measures defined on Borel sets which are equivalent to self-

adjoint operators describing the measuring act

• homogeneity and isotropy, the two basic properties of flat space that express the fact that this space should have no

observable physical properties meaning that different points in this space are indistinguishable.

• Galilean invariance and its combination with translational invariance 36

35The operators a(Q) and v(Q) are not entirely determined by Eqs.(98) and (101) since the quantities Pr and H are not determined by their commutation

properties. The remaining ambiguity is closely connected with the gauge invariance of the theory.
36For the relation of translational and Galilean invariance see Minkowski’s talk 1908 on the 80. NATURFORSCHER-VERSAMMLUNG in Cologne at

September 21, 1908

...Einmal bleibt ihre Form erhalten, wenn man das zugrunde gelegte räumliche Koordinatensystem einer beliebigen Lagenveränderung unter-

wirft, zweitens, wenn man es in seinem Bewegungszustande verändert, nämlich ihm irgendeine gleichförmige Translation aufprägt; auch spielt

der Nullpunkt der Zeit keine Rolle. Man ist gewohnt, die Axiome der Geometrie als erledigt anzusehen, wenn man sich reif für die Axiome
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All the derived insights are expressed by the covariant variables defining the space concept. To make these insights useful for a

viable physical theory the covariant variables defining the space concept are to be brought into relation with the contravariant

measuring entities (~p,E) used in the measuring process of classical physics. The insight gained by Eddington says: what

happens is that the measuring entities get identified with the variables of the space concept just leaving room only for a

constant ~ that balances the different units of covariant and contravariant variables.

To make this procedure transparent we first translate the results we have derived following Jauch’s nomenclature to the

language of Quantum Mechanics: H and P are referring to the spatial and temporal displacement operators ω and ~k that

appear in the exponent of plane waves: (ωt− ~k~x). The canonical commutator then becomes

[qr, ks] = iδrs (102)

and the time evolution operator gets written as

ω =
1

2µ
(k − a)2 + v (103)

These are the relations that exist between the space variables when localizability, translational and Galilean invariance of the

space concept are supposed.

What physicists measure are the contravariant entities E, ~p,m0 in classical mechanics and V, ~A in electrodynamics. What

is actually being measured by the physical appliances independent of the names given to them according to Eddington’s

conjecture are the covariant space variables ω,~k, µ, v, ~a. The linkage is an identity which is hidden by the different unit

systems being used. A translation factor ~ is needed to account for the different units. The identification then reads

H = ~ω

p = ~k

m0 = ~µ

e/cA = ~a

eV = ~v

(104)

This translation of the covariant entitities to contravariant entities by means of ~ directly leads to the Schrödinger picture of

Quantum Mechanics. This identification brings the commutator and the Schrödinger equation of Quantum Mechanics to the

fore

[qs, pr] = i~δsr

H =
1

2m0
(p− e/cA)2 + e V

(105)

The placeholders ~a and v turn out to refer to the electromagnetic field 37.

The Schrödinger picture is the direct emanation of the translational and Galilein invariance of homogeneous space being

represented by means of measurement projectors. In this view Quantum Mechanics is tracing the structure of flat space

imprinted by homogeneity and localizability and the requirement of Galilean invariance.

der Mechanik fühlt, und deshalb werden jene zwei Invarianzen wohl selten in einem Atemzuge genannt.

Jede von ihnen bedeutet eine gewisse Gruppe von Transformationen in sich für die Differentialgleichungen der Mechanik. Die Existenz der

ersteren Gruppe sieht man als einen fundamentalen Charakter des Raumes an. Die zweite Gruppe straft man am liebsten mit Verachtung, um

leichten Sinnes darüber hinwegzukommen, daß man von den physikalischen Erscheinungen her niemals entscheiden kann, ob der als ruhend

vorausgesetzte Raum sich nicht am Ende in einer gleichförmigen Translation befindet.

So führen jene zwei Gruppen ein völlig getrenntes Dasein nebeneinander. Ihr gänzlich heterogener Charakter mag davon abgeschreckt haben,

sie zu komponieren. Aber gerade die komponierte volle Gruppe als Ganzes gibt uns zu denken auf.

(pdf der wiki Seite, page 4)

37It is interesting to note that the principle of Galilean invariance as stated in (91) limits the possible nature of external forces to those of electromagnetic

origin. (Jauch 1968,TBD)
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5.4. Corollary

5.4.1. The emergence of inertial mass

As a byproduct we get an interesting conjecture concerning the origin of inertial mass. Inertial mass represents the parameter

of inequivalence that emerges when translations and Galilean transformations are combined within a 6-dimensional projective

translation group. It has the dimension of a reciprocal Compton wave length 38.

Remember that in Jauchs covariant projector derivation of Quantum Mechanics there appeared the parameter µ which even-

tually would lead to the mass m = ~µ. Thus with me =
~

λCc
we get µ = 1

λCc
, i.e. µ must be the reciprocal Compton wave

length. The Compton wave length is the de Broglie wave length with λ = h/p and with p = mec the relativistic momentum

of the electron at rest.

Jauch states:

”The quantitym/µwhich connects the displacement operator with the momentum operator is a fundamental con-

stant of the theory, which can be determined by any experiment which relates the measurement of a wavelength

(for instance a diffraction) to that of a momentum or energy. This constant is Planck’s constant

m/µ = ~ =
h

2π
(106)

. . .~H is the total energy of the particle.”

(Jauch 1968,210) (chapt.12)

In contrast to the objects in the SMC where the fermions are genuinely massless, the objects in Quantum Mechanics genuinely

have an inertial mass m0, resulting from including Galilean-invariance, i.e. a dynamical requirement.

5.4.2. The extraordinary role of the superposition principle in Quantum Mechanics

All the fascinating results connected with Quantum Mechanics indicating entanglement or such experiments as the delayed

choice experiment of Wheeler are based on the superposition principle. Superposition in the Standard Model but is the

feature of an interaction induced by U(1) which is an abelian symmetry. It is not available for interactions characterized by

symmetries like SU(2) and SU(3) which are non abelian.

Eddington (1923,149) has shown that n = 10 (ν = 5) is the minimal number of dimensions needed to simulate the effect of

a curved space by flat spaces of various dimensions. Only for ν = 1 the attached symmetry U(1) represents an abelian group

allowing for superposition.

Superposition hence seems to be a phenomenon that only exists in the lowest dimension and may not be generated by whatever

kind of quantization imposed on General Relativity.

Quantum Mechanics is representing a non-relativistic sector of experiments equipped with a superposition principle that

stems from the U(1)-symmetry characteristic for QED. In contrast to QED its objects are not spinors but wave functions in a

Hilbert space. Dirac has shown the inequivalence of spinors with the concept of a Hilbert space. (Dirac 1974)

5.4.3. The condition of the possibility to measure in Quantum Mechanics

The condition of the possibility to measure consists in establishing a projection-valued spectral measure on the real line,

which admits to define self-adjoint operators, namelyQ (position) admitting localizability and P (momentum) which admits

to define a homogeneous space.

The additional dynamical requirement of Galilean invariance then predetermines the existence of an invariant mass m0 and

fixes a specific Hamiltonian that provides the Schrödinger picture of Quantum Mechanics.

38 ~

mec
is the Compton wavelength of the electron.
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5.4.4. Quantum Mechanics and SMC: the transition to probabilities

Since no invariant length may be defined neither in the realm of QuantumMechanics nor of SMC this paves the way for

the transition from measuring (by comparison with a measuring stick) to counting (conditional probabilities). The measurable

entity is defined as the relative probability of certain outcomes of scattering experiments.

5.5. The meaning of identification

What is the meaning of identification? According to Eddington identification is a one-sided process: the contravariant mea-

suring entities get identified with the covariant variables defining the space concept, not the other way round.

What is the reason for this one-sidedness? Identification does not mean stating a relation between contravariant and covariant

entities with a constant balancing disparate units. Identification in the sense of Eddington means taking for truth that the

covariant space variable actually gets the target of the measuring process and it is a matter of habit only, that contravariant

units are used. This is the key to the observation that physicists in theory and practice are just tracing the physiognomy of a

space concept. They essentially are guided by consistency reasons.

Quantum Mechanics whence is the result of identifying the contravariant measuring entities with the suitably chosen variables

of a space concept that allows to encode the condition of the possibility to measure. It’s internal consistency guarantees the

consistency of the resulting theory with its experimentally determined results.

6. The panorama of physics

6.1. The realms of physics represent distinct epistemes

The access of physics to the world is governed by space concepts. They enable to encode the condition of the possibili-

ty to measure. Distinct branches of physics - classical mechanics, general relativity, elementary particle physics, quantum

mechanics, electrodynamics - are recognized to be distinct because of evaluating distinct aspects of a space concept.

The effort of modern physics beyond classical mechanics consists in unfolding the space concept by either getting rid of

restrictions imposed by the classical view as General Relativity did or by relying on flat space but exploiting specific aspects

of it not covered before.

• With Quantum Mechanics physicists have shifted their focus from the groups of symmetry transformations to the Lie

algebra of the generators of these groups, handling especially translations and Galilei transformations. This enables to

get rid of the classical restriction to continuous processes (”natura non fecit saltus”), opening the way to quanta.

• Electrodynamics explores the antisymmetric structure of multivectors in flat space

From hindsight it seems that the crucial role of physicists consists in eliciting the space concept that allows for the consistency

of experimental results and theoretical explanations.

• By turning to Riemannian space General Relativity skipped the most severe restriction imposed by using the rigid

mathematical objects of Euclidean geometry. The metric tensor believed to be needed for measurement gets identified

with the Einstein tensor, the only symmetrical 2-rank tensor derived from the fundamental Riemann-Christoffel tensor.

BH’s emerge from the metric as well as Keplerian central objects encircled by the geodesics of planets.

• Elementary particle physics extends flat space to become a complex space equipped with a new mathematical entity

called spinor and featuring a new type of invariant that plays the role of an interaction as soon as the spinor components

are identified with fundamental particles coming to experimental evidence in the same breath.

• Quantum Mechanics (QM) relies on a concept of flat space not defined by mathematical groups of homogeneous

symmetry transformations as done in the edifice of classical physics but defined by the generators of the Lie algebra

equivalent to these transformations supplemented by a position operator defining localizability.
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• Electromagnetism relies on the asymmetric features of the traditional concept of flat space by identifying the electro-

magnetic field Fµν with the bivector and the electric and magnetic field with its polar and axial components. The wish

to identify these components as real fields becoming object of measurement necessarily requires to equip this space

with a pseudo-euclidean metric (see sect.4.2.1, p.23).

6.1.1. Necessary ingredients: an invariant and the condition of the possibility to measure

Two basic features are essential for a space concept to be valuable to become the base for a physical realm:

• the space concept provides for an invariant that plays the role of a measuring stick. In case of General Relativity the

invariant length element ds2 = gµνdx
µdxν serves this purpose. In elementary particle physics the Cartan invariant

of complex space provides for the interaction Lagrangian of QED. In Quantum Mechanics the generators of time and

spatial translations provide for the invariant entities energy and momentum.

• the space concept allows to encode a condition of the possibility to measure. This condition physically constitutes the

basic equation of motion. In General Relativity this is the first Einstein field equation. In elementary particle physics this

condition is given by the defining equation of spinors. This mathematical definition, when applied in four dimensions,

for fermions physically constitutes the Dirac equation. The bosonic content is defined by the fact that the vectors of

this space are supposed to be isotropic which defines the equation of motion of bosons to be k2 = 0.

Consistency is the invisible hand that guides the conceptualization of the experiment and the theoretical representation of the

output. The consistency of the space concept will guarantee the consistency of the theory.

6.1.2. The condition of the possibility to measure constitutes the equations of motion

In each realm we find:

The condition of the possibility to measure constitutes the basic equation of motion that determines physics in this field. This

systematic coincidence is the reason for the tremendous power of physics to predict the outcome of measurements. Each

successfull measurement necessarily confirms the condition of the possibility to measure.

This condition exposes the homogeneous equations, expressed by means of the covariant variables of the space concept. The

resulting equations are

• in General Relativity the 1. Einstein field equation,

• in elementary particle physics the Dirac equation,

• in Quantum Mechanics the Schrödinger equation,

• in electrodynamics the homogeneous Maxwell equation.

6.1.3. Identifying contravariant measuring entities with covariant space variables

Measurements in most realms of physics have to be performed by using the measuring appliances of classical physics. Phy-

sicists are forced to identify the contravariant measuring entities of classical mechanics with the covariant variables deter-

mining the space concept. These identifications constitute the inhomogeneous equations. They necessarily must be mediated

by a fundamental constant which takes into account the different dimensions of the contravariant and covariant entities. The

following equations are resulting:

• In case of General Relativity the 2nd Einstein field equation, Gµν − 1/2gµνG = −8πκT µν , which identifies the

measuring variables compiled in the energy-stress tensor T µν [erg/cm3] with the curvatures compiled in the Einstein

tensor Gµν [cm−2]. Newton’s gravitational constant κ [cm/g] plays the role of a mediator
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• in case of Quantum Mechanics this identification is expressed by the basic postulate 39 pµ = ~kµ with 40 pµ [erg]
representing the contravariant energy-momentum vector of particles, kµ [s−1] the covariant wave vector of plane waves

and Plancks action quantum ~ [erg/s−1] taking the role of the mediator;

• in case of electrodynamics the inhomogeneous Maxwell equations, Fµνν = Jµ, identify the contravariant measuring

variables contained in the electric current density Jµ with the covariant variables compiled in the divergence of the

electromagnetic field Fµνν . The electric charge e [(gcm)1/2] plays the role of the mediator. The charge does not appear

explicitly in this identification since by historical reasons it has been integrated in the definition of the electromagnetic

field, which then acquired a dimension [charge/cm2].

6.1.4. Properties of physical objects are mirroring features of the underlying space

• The defining equation for spinors in 4-dim space physically reappears to be the Dirac equation. The complicated

structure of their indices mathematically induced by their defining recursion formula gets mirrored in the structure that

governs the occurrence of the elementary particles, the leptons and quarks. A new constant appearing in spinor space

in 4 dimensions physically reappears to be the interaction Hamiltonian of QED with its characteristic Yukawa shape.

• a mathematical property shown by the generators of space translations when combined with Galilei transformations

physically reappears as the Schrödinger equation and the characteristic commutator of Quantum Mechanics as soon as

the experimental entities compiled in pµ get identified with the space variables, compiled in the wave vector kµ.

• Maxwell’s homogeneous equations appear to be an identity of the mathematical bivector in flat space. A mathematical

property of the polar and axial components of the bivector demands the conditions electric and magnetic fields are

subjected to in Maxwell’s theory, viz the equalness of their absolute value and their characteristic orthogonality.

6.2. Objects as well as their interactions emerge from the condition of the possibility to measure

To give the equations of motion a physical meaning an object has to be physically postulated and has to be identified with

its mathematical counterpart in this equation. This is an aspect of identification not expressed by mathematical equations. It

constitutes a fundamental step in erecting the physical edifice. The objects emerge as soon as the condition of the possibility

to measure gets specified in the respective realm of physics.

The existence of objects and the existence of their interactions that make them recognizable by the physical apparatus are

mutually conditioning each other. Both, the objects of the theory as well as their interactions, are an emergent feature of the

space concept.

• In General Relativity the astronomical objects emerge from the condition of the possibility to measure, i.e. from the 1st

Einstein field equation, as soon as the invariant length ds2 gets restricted to respect some additional conditions: besides

the requirement on the solution to be static (to be solvable at all) and to display spatial spherical symmetry (to allow for

an isolated object) and to be invariant against time inversion it should approach the Minkowski metric at r → ∞ (since

no influence from any mass is expected there). The existence of a Lorentzian metric is the most basic requirement on

General Relativity to assure the approximate validity of SRT in spacetime regions which are small compared to the

time and distance scale set by the curvature of spacetime (Ehlers 2007,92). Under these conditions the Schwarzschild

metric appears. The existence of objects is signaled by a factor (1− 2m/r) in the temporal and radial part of the metric

gµν announcing the singularity structure of a massive black hole (BH) with its covariant mass m given in [cm].

The interaction of these objects is physically determined by identifying the metric gµν , from which the object is emer-

ging, with a physically acting gravito-inertial field. 41

Calculating the geodesics 42 by means of this metric then produces all the successes of early General Relativity - the

perihelion shift of Mercury, the deflection of light and the redshift of light in a gravitational field.

39 Quantum Mechanics is a non-relativistic theory. It is only as a convenient shorthand notation that we are using a relativistic nomenclature
40we use units with the convention c = 1
41Be aware of Eddington (1975,221,fn.*): ”An electromagnetic field is a ”thing”; a gravitational field is not, Einstein’s theory having shown that it is

nothing more than the manifestation of the metric.”. This differentiation makes it possible to speak of empty space in contrast to space filled with matter.
42The existence of the geodesics is guaranteed as a consequence of the energy-stress tensor being divergence free, which by construction is automatically

fulfilled (see next section)
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• in elementary particle physics fundamental fermions, the leptons and quarks, physically get postulated and identified

with the components of spinors ξα. These physical objects by being identified with isotropic mathematical structures

necessarily are massless thereby reproducing the maslessness of the fundamental fermions constituting the Standard

Model before the advent of the Higgs field.

Inverting the defining equation of spinors that describes how to span the complex flat space by isotropic vectors results

in the fundamental equation of motion Pξ = 0 with P the associated matrix of the vectors that span complex flat space.

This may be seen by specializing to complex dimension ν = 2 corresponding to dimension n = 4 in real space: we

find the Dirac equation 6pξ = 0 for a massless fermion.

The transition of flat space to complex makes appear the new Cartan invariant that allows to become identified as an

interaction.This identification of the invariant is possible as soon as its ingredients, the spinors, get identified with a set

of fundamental fermions, accompanied by the identification of bosons, called the mediators of the interaction, as the

associated matrix of the multivector involved in the invariant.

The Cartan invariant in the dimension ν = 2 turns out to be identical with the interaction Hamiltonian of QED 43. In

higher dimensions the invariant reproduces another set of interactions acting between the fermions that get identified

with the spinor components available in this dimension.

• In electromagnetism the electromagnetic field got postulated by Maxwell and identified with the bivector Fµν of flat

space. The electric and magnetic fields, ~E and ~B, experimentally described by Faraday, Gauss and Ampère, turned

out to be the polar and axial components of the bivector automatically obyeying the two relations characteristic for

the respective components: ~E · ~B = 0 and | ~E|2 = | ~B|2. To achieve this identification Maxwell saw himself forced to

supplement the configuration by postulating a displacement current.

A complete description of the interaction of the electromagnetic field Fµν with matter is only addressable in the frame-

work of the spinor theory of elementary particles.

7. General Relativity and Quantum Mechanics: A deep gulf and a structural affinity

7.1. The deep gulf between General Relativity and Quantum Mechanics

There is a deep gulf separating Quantum Mechanics from General Relativity. General Relativity and Quantum Mechanics

have a distinct epistemological foundation.

General Relativity is founded on Riemannian space and sticking on a representation by tensors. According to Norton (1993)

as a result of eight decades of debate the trademark of General Relativity is the denial of the existence of any absolute object

that is acting but is not acted upon. This excludes any definition of space by transformations, because these automatically

would require the existence of an absolute object.

The operational space of Quantum Mechanics in contrast is spanned by the generators of a Lie algebra referring to translations

combined with Galilei transformations. Moreover it necessarily refers to the pre-relativistic separation of space and time

which not even allows for a spacetime metric to be defined.

Whereas General Relativity heavily relies on the definition of a metric which turns out to be the gravito-inertial field Quantum

Mechanics from fundamental reasons doesn’t know of any metric. Quantum Mechanics is necessarily non-relativistic since

the imaginary character of time in a pseudo-euclidean metric does not allow to associate time with a hermitian operator which

would be necessary to make time a measureable observable.

Quantum Mechanics shows a quantization based on the Planck constant ~ which has become its hallmark. This feature is a

direct consequence of the specific way the identification of contravariant mesuring entities (E, ~p) with the covariant space va-

riables (ω,~k) has been conceptualized in Quantum Mechanics. The commutator between space and momentum characteristic

for Quantum Mechanics is the 1:1 translation of the fundamental commutator between location and its displacement.

Comparison with the Standard Model indicates that the Schrödinger equation covers the e.m. interaction defined by a U(1)
symmetry leading to the superposition phenomena that have become the second hallmark of Quantum Mechanics.

43referring to the original formulation of QED using the Dirac matrices γµ as 4-dim representation of the Clifford-algebra

35



7.2. The cousinship of General Relativity and Quantum Mechanics

But nevertheless there also is a deep structural affinity between both. General Relativity and Quantum Mechanics both give

an answer to the same question: how can a measurement take place under the condition that no material mesuring stick is

available? This is the problem for measurements below the distance of atoms (Quantum Mechanics) and for measurents in the

empty universe (General Relativity). The answers look very different but in both cases rely on the introduction of a covariant

entity taking the role of a measuring stick: the wave vector kµ in case of Quantum Mechanics and the local directed curvatures
44 contained in Gµν in case of General Relativity.

7.2.1. Theater of identification set by kinetic energy (Quantum Mechanics) or by mass (General Relativity)

To make them a physical theory both concepts need to identify the contravariant measuring entities of classical physics with

the covariant variables of the resp. space concept.

In Quantum Mechanics the contravariant measuring entities compiled in the energy-momentum vector pµ 45 get identified

with the displacement vector kµ specifying the space concept:

pµ = ~kµ (107)

The contravariant energy is measured in [erg]. The equivalent covariant wave entity, the frequency, is measured in [s−1]. The

Planck constant therefore has the dimension [erg · s].
In General Relativity the contravariant measuring entities compiled in the energy-stress-tensor T µν get identified with the

covariant curvatures contained in Gµν by demanding

− 8πκT µν = Gµν − 1/2gµνG (2nd Einstein field equation). (108)

The heavy mass as a representative of the space concept appears on the right hand side, equipped with a dimension [cm] (see

Eddington 1975,p.85) . Its equivalent in the classical measuring arena, the inertial mass, is appearing on the left hand side

of eq.(108) with the dimension [g] (see Eddington 1975,116,130). The Newtonian gravitational constant κ as the mediator

between covariant and contravariant entities hence has the dimension [cm]/[g].

The systematic difference between both constants, ~ and κ, hence reduces to the fact that Quantum Mechanics is featuring

the transition between contravariant and covariant entities on a stage set by the kinetic energy whereas General Relativity is

featuring this transition on a stage set by the mass.

Hence besides the deep gulf separating Quantum Mechanics and General Relativity there as well does exist a deep structural

affinity of Quantum Mechanics and General Relativity.

The founding equation of Quantum Mechanics, eq.(107), is the 1-dimensional analogue of the 2-dimensional founding equa-

tion of General Relativity, eq.(108), Einstein’s 2nd field equation.

General Relativity whence is performing the same step of identification as Quantum Mechanics, but in a 2-dim tensor world

instead of a 1-dim vector world.

The Planck constant ~ epistemologically plays the same role in Quantum Mechanics as does Newton’s gravitational constant

κ in General Relativity.

7.2.2. Geodesics and dispersion relation

The results that made early General Relativity famous were reached without Newton’s gravitational constant κ intervening.

But an additional assumption was necessary fixing the orbit of an object to be a geodesics

d2xµ

ds2
− Γµαβ

dxα

ds

dxβ

ds
= 0 (109)

This assumption allowed to correctly calculate the Perihelion shift of Mercury and the deflection of light in the gravitational

field of the sun.

44the local directed curvatures, see the detailed specification in Eddington 1975
45written in special relativistic notation in spite of the fact that Quantum Mechanics does not admit a special relativistic form
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In Quantum Mechanics a similar situation exists. The results for e.g. the large sector of Quantum Optics are got without

Plancks constant ~ intervening. Also in this case an additional postulate had to be introduced, the requirement of the existence

of a dispersion relation

λ · ν = c (110)

It guarantees the existence of light rays proceeding by means of a wave front perpendicular to the displacement vector kµ.

This assumption then allows for the correct calculation of e.g. the delayed choice quantum eraser 46. The additional postulate

whence serves to fix the geometry not by a mathematical postulate but by means of a physical object 47. The dispersion relation

allows for the transition from the covariant units [s−1] of the frequency to the contravariant units [cm] of wave length.

In both cases be it the geodesics in a curved world or the dispersion relation in flat space the additional requirement defines

the shortest or longest distance between two positions. The path of a physical object, a planet in case of General Relativity, a

light ray in case of Quantum Mechanics, is used to specify the geometry.

———————————————————————————-

7.2.3. Identification is the entrance door for the logical figure of mutual conditioning

Quantum Mechanics has become known for the mutual conditioning of waves and particles. Particles may behave as waves

and waves may show features of a particle. This mutual conditioning results from the identification of the classical contrava-

riant measuring entities E and ~p with the covariant frequency ω and the wave vector ~k.

In General Relativity a similar phenomenon may be observed, the mutual conditioning of matter and space - the distribution of

matter determines the metric, the metric determines where matter flows.The mutual conditioning of matter and space results

from the identification of the energy-stress tensor T µν with the Einstein tensor Gµν .

8. QED in spite of its name is not a quantum theory

A careful inspection (see app.C, p.53) reveals that no result of QED displays any dependence on ~ despite the fact that

the Feynman rules are interspersed with occurrences of ~. The only dependance the results of QED show is on the fine

structure constant αem ≈ 1/137, the coupling constant of the e.m. interaction. By convention only QED is embedded into a

mathematical enveloppe making the Feynman rules display ~.

The effect of quantization is produced by the appearance of creation and annihilation operators in the scattering amplitudes.

In QED they are introduced by the basic commutator [q, p] = i~ of Quantum Mechanics. The representation based on the

spinors of Cartan but shows that they reflect the effect of reflection operators when acting on the components of spinors.

8.1. The role of the commutator [q, p] = i~

The canonical commutator [q, p] = i~ of Quantum Mechanics has a classical origin. It results from the purely classical so

called Weyl commutator [Q,K] = i for the generatorK of translations and the position operatorQ 48.

The special consequences of these purely classical results induced in Quantum Mechanics result as soon as the measuring

entity ~p gets identified with the generator ~k by setting ~p = ~~k. This identification and its temporal equivalent E = ~ω give

Quantum Mechanics its special and fascinating role.

The canonical commutator is easily shown to be equivalent to the commutator of creation and annihilation operators for

bosons [a, a†]− = 1. 49 This transition first shown for the harmonic oszillator finds wide application in the procedure of

46Gaasbeek, Bram, Demystifying the Delayed Choice Experiments, arXiv:1007.3977v1 [quant-ph]
47The technique of freqency combs has allowed to exploit an ever broader regime (s. BPM TBD)
48This commutator simply reflects the classical commutator [∂x, x] = 1 which embodies the classical multiplicative law of differentiation.
49By setting

a† =
1√
2
(
p

~
+ iq), a =

1√
2
(
p

~
− iq) (111)

we easily from [q, p] = i~ get the relation:

[a, a†]− = 1 (112)

which is independent on ~. It shows the signature of creation and annihilation operators of bosons.
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second quantization, which marks the transition to occupation numbers in Fock space and hence the entry to QED. This

transition is getting rid of the Planck quantum ~.

8.2. The reflection operators acting on spinors as creation/annihilation operators suggest QED to be a quantum theory

This canonical commutator of Quantum Mechanics is the historical origin for the appearance of creation and annihilation

operators in the amplitudes of QED which are responsible for the quantization effects. But there is a deeper reason for this

appearance.

In a representation based on Cartan the reflection operators are the backbone of the representation of kinematic variables

as associated matrices. They first appeared as γ-matrices, γµp
µ, in the Dirac equation and as ψ̃γµA

µψ in the interaction

Hamiltonian of QED. These reflection operators when acting on spinor components are acting as creation and annihilation

operators (see 3.2.2, p.14).

The Cartan induced representation based on spinors and reflection operators demonstrates that the commutator of Quantum

Mechanics does not play any role in QED. The impression of quantization is effected by the appearance of creation and

annihilation operators offered by the reflection operators when acting on spinor components.

The fundamental constant ~ hence does not play any role in this mimicking of quantization. ~ is not an indicator for a

quantization taking place in QED. And indeed no result of QED displays any dependence on ~.

8.3. The quest for quantizing General Relativity

General Relativity till now is resisting all attempts to apply known quantization procedures of quantum field theory. We

are urged to ask another question: what are the reasons responsible for the insistence with which quantization of General

Relativity is demanded for?

One reason seems to be the success of QED which suggests that a field theory has to be quantized to become successful.

Another one might be the wish to integrate such fascinating phenomena like entanglement or the delayed choice experiment

of Wheeler into General Relativity. And another one the misinterpretation the canonical commutator of Quantum Mechanics

could suggest a quantization of spacetime itself and hence of General Relativity as the all encompassing theory of spacetime.

We have shown why the success of QED does not demand for quantizing General Relativity. In spite of its name QED is not a

quantum theory. The results of QED do not show any dependence on ~ but are dependent on the e.m. coupling constant αem
only (see sect.(8.3.2)).

The canonical commutator of Quantum Mechanics has its roots in the classical commutator between the location and the

displacement operator. It does not invite to such far reaching conclusions as a quantization of General Relativity.

And we will show why phenomena based on the superposition principle of Quantum Mechanics are not plausible to reflect

some basic feature of General Relativity.

Instead we have to reevaluate the relation between Quantum Mechanics and General Relativity. This reevaluation shows that

General Relativity already possesses all the features that make it a fair representative of Quantum Mechanics in the general

relativistic realm.

8.3.1. The success of QED does not provide any reason for quantizing General Relativity

Quantum electrodynamics (QED) historically marks the attempt to develop Quantum Mechanics to become a relativistic

field theory. It has become the most successfull theory of physics. A deeper analysis but shows: QED though historically

descendent from Quantum Mechanics and in spite of its naming genuinely has nothing to do with Plancks action quantum ~.

8.3.2. QED does not suggest General Relativity to become quantized

We conclude that the familiar view that QED be the relativistic encoding of a quantum theory based on Planck’s constant ~

is misleading. The success of QED seduces to erroneously demand field theories to become quantized. This seems to be the

origin of the insistence of the quest for quantizing General Relativity.
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Part of the magics of quantization seems to derive from its alleged role in the fascinating and successful field of elementary

particle physics. In our view this is a fallacy. We have shown that QED is tracing the physiognomy of a complex flat space

represented by reflections. Nowhere in this theory does ~ play any essential role.

The commutator [q, p] = i~ eventually has been taken to suggest a quantization of space and hence, since General Relativity

is a theory of space, to suggest a quantization of General Relativity. The origin of this commutator as derived above but

suggests there to be no hint to any quantization of space in this commutator.

8.4. The new type of fundamental constant αem in QED

In elementary particle physics the fundamental particles, the leptons and quarks, are identified with the covariant variables

of the space concept, the spinor components. It is the Cartan invariant which gets identified with the interactions of these

objects. No special identification of contravariant measuring entities with covariant space variables has to be performed.

This is in striking contrast to the case of General Relativity - requiring κ - and to the case of Quantum Mechanics - requiring

~ for identification of the measuring entities with the variables of the space concept.

This is the reason why the Planck constant ~ cannot play any other than spurious role in elementary particle physics as

compiled in QED.

If we follow the conjecture of Wyler (1968) the coupling constant of the e.m. interaction αem - like the coupling constants of

the weak αweak and of the strong αstrong interactions (TBD) - are determined completely by the structure of flat space, viz.

the ratio of group volumina as determined for flat space by Hua (TBD) 50.

In striking contrast to the Newtonian gravitational constant κ and Planck’s constant ~ these coupling constants hence are not

constants fed in from the outside but are representing intrinsic features of the higher dimensions of flat space.

9. The location of elementary particles in General Relativity

A theory of matter based on Cartan being a theory of isotropic, i.e. vectors of length zero, then suggests its location within

the framework of general relativity.

9.1. Antisymmetric features within the space concept

Eddington already in 1923 conjectured the e.m. field Fµν to be the antisymmetric part of the contractionGµν of the Riemann-

Christoffel tensor:

Gµν = Bλµνλ (113)

We write Gµν = Rµν + Fµν , Rµν = 1/2(Gµν + Gνµ), Fµν = 1/2(Gµν − Gνµ). Identifying the metric tensor with a

multiple of the redefined Einstein tensor

ds2 = λGµνdx
µdxν (114)

leads to

ds2 = λRµνdx
µdxν (115)

The contribution of the antisymmetric part ofGµν to the invariant length element is zero. This is the sector in which fermions,

elementary particles, which are defined by being isotropic, i.e of length zero, are located 51.

Till now we could state that space and matter are conditioning each other: the distribution of matter is determining the space

curvature that determines how matter gets distributed. With the inclusion of an antisymmetric aspect of matter this statement

remains true but needs refinement. Matter and space now are much more intermingled than suggested by the traditional

picture. Both now split up to show symmetric and antisymmetric aspects that physically are clearly distinct.

50Their derivation on purely group theoretical grounds did not know the Cartan framework into which we have embedded the theory of elementary

particles.
51We note that the traditional requirement that the Riemann-Christoffel tensor Bλ

µνρ should be symmetric in µ and ν in the sense of Anderson (Anderson,

Gautreau 1969,1657) would mean to postulate an absolute object not admitted in General Relativity.
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9.1.1. Eddington incorporates the e.m. field

Eddington paved the way by locating the e.m. field Fµν to be the antisymmetric part of the contraction of the Riemann-

Christoffel tensor whose symmetric part is constituting the metric tensor gµν to become identified with the gravito-inertial

field.

Eddington had to restrict himself to the implementation of the electromagnetic field into the frame of General Relativity. No

viable theory of matter did exist at his time. Replacing the reference to the mathematical procedure of parallel displacement

by a principle of identification allowed him to circumvent (Edd 1923,222) the criticism of Einstein and others regarding a

similar bold venture undertaken by Weyl.

Instead of deriving the e.m. field by parallel displacement Eddington identified the e.m. field with the antisymmetric part of

the contraction of the Riemann-Christoffel tensor. This implied that the symmetric Einstein tensor Gµν would acquire an

antisymmetric counterpart Fµν . Fed into the invariant length definition ds2 = Gµνdx
µdxν this antisymmetric contribution

would lead to ds2 = 0. This indeed is the trajectory of light in General Relativity.

Fµν automatically is obeying the homogeneous Maxwell equations, since 52 it may be derived from a potential Fµν =
∂µAν−∂νAµ. The coupling of this field to matter phenomenologically is described by the inhomogeneous Maxwell equations

∂νF
µν = Jµ with Jµ an e.m. current density 53. This is the way the contravariant measuring entities of classical physics

sampled in the e.m. current density get identified with the space concept variables, viz. the bivector inhabiting flat space. The

Maxwellian theory of electromagnetism hence easily derives from analyzing the behaviour of the bivector of flat space.

9.1.2. The disappearance of elementary particles in the formalism of General Relativity

The symmetric part generates the nonvanishing contribution to the invariant-length element ds2. The contribution of the

antisymmetric part to ds2 is zero. The antisymmetric nature of the e.m. field Fµν leads to the square of the photon momentum

being zero, k2 = 0. But this is the genuine definition of fermionic matter characterized by reference to objects of length zero.

Fermionic matter is representing the antisymmetric properties of the space concept while gravitation is representing the

symmetric properties. The bosonic fields Fµν mediating the interaction of the matter particles appear to be the antisymmetric

twin of the symmetric metric tensor gµν which represents the gravitational interaction. The e.m. field which is part of the

theory of elementary particles finds its position at the location Eddington devised to it (Edd 1923,223), since it by its genuine

nature represents ds2 = 0.

This kind of matter hence necessarily does not appear explicitly in a theory like General Relativity whose calculations are

concentrated around the invariant length element. General Relativity puts its emphasis on objects with a geodesics decribed

by ds2 6= 0

9.2. Symmetric and antisymmetric matter

Before elementary particle physics entered the stage we found an explicit mathematical representation of the symmetric

appearance of matter. The gravito-inertial field gµν made its appearance in the invariant length element and determined the

interaction with other matter. What it was but that interacted - namely the BH or the Keplerian central object or even the

planet Mercury - had to be inferred by some respective disturbance of the symmetric metric tensor, which only in case of the

BH showed a clear mathematical signature expressed by the factor (1− 2m/r). We might talk about symmetric matter which

with the appearance of elementary particles got an antisymmetric counterpart.

The interactions of the antisymmetric matter gets mediated by the associated matrices of antisymmetric multivectors of flat

space. The associated matrices are rooted deeply in the spinorial representation of space. An example of an associated matrix

within the four dimensions of SRT is given by 6A, the Dirac slash representing the product γµAµ. Each hint to the spin

structure but gets lost at the surface that General Relativity presents by founding its physical horizon on the invariant length

element.

Eddington succeeded to identify the General Relativity location of the electromagnetic field Fµν as the antisymmetric part

of the contraction of the Riemann-Christoffel tensor. This assured the validity of the homogeneous Maxwell equations. But

52as Eddington (1923,219) showed under very general conditions
53Eddington was confronted with the difficulty of how to identify this charged matter current density as long as no microscopic theory of matter did exist.

This set a halt to his aim to deduce theoretical physics from a space concept by using his principle of identification.
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without any spinorial representation this field was devoid of any deeper relation to matter. It could be formally coupled to the

current density of electrodynamics

∂νF
µν = Jµ (116)

but without any microphysical representation of the current density Jµ being available.

Antisymmetric matter is identified with spinors. Their components are identified to be the fundamental particles that take part

in interactions that depend on the dimension of flat space. What makes up ’that what interacts’ is clearly defined. And also this

interaction is clearly defined: spinors are constituting the Cartan invariant, an interaction term that is completely independent

of the invariant length element used in General Relativity. What constitutes antisymmetric matter and its interaction is much

clearer defined as what means symmetric matter.

Based on the role of isotropic vectors in Cartan’s space concept we would be well advised to conjecture antisymmetric matter

to be located in the antisymmetric part of General Relativity characterized by an antisymmetric equivalent of the Einstein

tensor leading to isotropic phenomena with ds2 = 0. The antisymmetric part is comprising bosonic fields like the e.m. field,

Fµν , while the symmetric counterpart being represented by the gravito-inertial field gµν .

9.3. Conditional existence

To speak of the location of elementary particles in General Relativity but is misconceiving the gulf that separates a repre-

sentation by tensors as used in General Relativity and a representation by spinors as required by the concept of a complex

flat space. The problem does not derive from the space being complex but from the problem that spinors ”have metric but

not affine characteristics.”(Cartan 1938,Introduction) 54). To have ”affine characteristics”, i.e. to be valid in any coordinate

system whatsoever, is a prerequisite to become accepted in General Relativity. Cartan claims it to be impossible to handle

spinors in the Riemannian space with the usual techniques 55.

Postulating the existence of spinors in Riemannian space leads to difficulties which according to Cartan are insurmountable

with the techniques usually applied in Riemannian space. But the existence of elementary particles irrevocably seems to be

attached to the existence of spinors. The existence of elementary particles thus seems to be bound to the possibility to consider

the respective space to be flat. What to do?

9.3.1. Permanent existence vs. conditional existence

There might be a deeper reason that prevents the explicit appearance of fermionic matter in General Relativity. The theory of

General Relativity is deemed to be generally covariant. Whereas every theory, even Newton’s theory, might be represented by

a general covariant formalism, General Relativity is different by not admitting so called absolute objects (Anderson, Gautreau

1969,1657). Those are objects that act but are not acted upon, like the Minkowski metric in SRT or the absolute filiation of

space and time in Newton’s theory. General Relativity is based on affine objects, i.e. affine tensors that persist against whatever

homogeneous transformations. Spinors are tensors against rotations and reflections but they are not affine. Cartan insists on a

purely geometrical origin of spinors. This origin makes it easy to introduce spinors into Riemannian geometry and particularly

to apply the idea of parallel transport to these geometrical entities. But:

”the difficulties - difficulties which are insurmountable (emphasis by Cartan) if classical techniques of Rieman-

nian geometry are used - can be explained. These classical techniques are applicable to vectors and to ordinary

tensors, which, besides their metric character, possess a purely affine character; but they cannot be applied to

spinors which have metric but not affine characteristics” (Cartan 1966,Introduction) 56.

54”Finally this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport

to these geometrical entities. The difficulties which have been encountered in this respect - difficulties which are insurmountable (emphasis by E.Cartan) if

classical techniques of Riemannian geometry are used - can be explained. These classical techniques are applicable to vectors and ordinary tensors, which,

besides their metric character, possess a purely affine character; but they cannot be applied to spinors which have metric but not affine characteristics.”
55Attempts (e.g. L.Infeld and B.L.van der Waerden) to avoid this impossibility - by decoupling the spinor transformation properties from their geometrical

origin - were rejected by Cartan as ”geometrically and even physically so startling” (french: ”choquant”) (Cartan 1938,151)
56Cartan makes this impossibility be subject of a fundamental theorem:

”...; that is having chosen an arbitrary system of coordinates xi for the space, it is impossible to represent a spinor by any finite number

N whatsoever of components uα such that the uα have covariant derivatives of the form uα,i = ∂uα/∂xi + Λβ
αiuβ where the Λβ

αi are

determinate functions of xh.”

(Cartan 1938,151)
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The existence of elementary particles irrevocably seems to be attached to the existence of spinors. The existence of elemen-

tary particles hence seems to be bound to the possibility to consider the respective space to be flat. We have to envisage a

conditional existence of fundamental particles 57. They might exist as far as the respective location may be considered flat.

9.3.2. The expansion of the Universe: another example of conditional existence

Comparison with a similar problem occurring with the expansion of the Universe could provide a suggestion how to resolve

this conundrum. The expansion while obviously concerning the Universe as a whole according to the reality of astronomical

observations does not apply to our solar system, nor does it apply to the Milky Way nor to clusters of galaxies. Why? The

expansion of space is a conditional assertion. It has been derived from the Friedmann-Walker metric under the condition that

space be homogeneous. The above examples but are by no means representative for a homogeneous space. The phenomenon

of expansion applies to the Universe as a whole only if statistics on this level makes space to appear homogeneous.

This does not mean that reality is guided by mathematical assumptions. It only says that what we observe depends on the

frame that is conditioning observation.

We have to question the conception of unconditional permanence that lurks behind the european philosophical conception of

substance. With the modern picture of transmutation of elementary particles into one another the conception of permanence

has been severely weakend. But even before the appearance of elementary particles Eddington in his 1923 book on several

occasions did remind how deeply the conception of permanence did influence the mathematical conception of classical

mechanics.

9.3.3. Fermionic fundamental particles: another example of conditional existence

The conception of an unconditional existence of elementary particles would constitute an absolute object analogous to the

Newtonian filiation of time as divorced from space. We conjecture that the existence of fermionic fundamental particles is

bound to the condition that space may be considered to be flat. 58

For most considerations involving fundamental particles in General Relativity this condition is of no major relevance. J. Ehlers

in his 2007 account on General Relativity underlines the existence of a Lorentzian metric to be the most basic assumption of

General Relativity. It implies the approximate validity of SRT in spacetime regions which are small compared to the time and

distance scale set by the curvature of spacetime. ”Even in neutron stars this scale is much larger than the scales relevant for

the properties of bulk matter, atoms or nuclei. Therefore equations of state, cross sections, transport coefficients etc . derived

from quantum theory can be incorporated into the classical matter models used in General Relativity in spite of the fact that

these theories are in principle incompatible.”(Ehlers 2007,92)

We therefore conjecture that fermionic matter finds its location within the antisymmetric contraction of the Riemann-Christoffel

tensor provoking the condition ds2 = 0.

9.4. Local position invariance (LPI)

There is some interesting corollary that underpins the view argued here 59:

• The view argued here in a natural way implies local position invariance (LPI), the 3rd ingredient within Einstein’s

equivalence principle EEP. LPI states: ”The outcome of any local non-gravitational experiment is independent of where

and when in the universe it is performed.” (Will 2014, Introduction). Since General Relativity according to Eddington is

describing observation as a process of identification of the classical contravariant measuring entities with the covariant

variables of the space concept the LPI necessarily is fullfilled.

Attempts (e.g. L.Infeld and B.L.van der Waerden) to avoid this impossibility by decoupling the spinor transformation properties from their geometrical

origin were rejected by Cartan as ”geometrically and even physically so startling” (french: ”choquant”)(Cartan 1938,151)
57Let us remind that we know this construct from the expansion of the universe that is bound to the condition that this space is homogeneous. The

expansion thus applies to the universe as a whole which appears to be homogeneous but it does not apply to our solar system or to the galaxy or to even

clusters of galaxies (see sect.9.3.2, p.42).
58The conditional existence of fundamental particles is compatible with the conclusions of Gibbons et.al.(1977): ”The derivation of these results involves

abandoning the idea that particles should be defined in an observer independent manner.”
59implying that General Relativity and the respective observations trace the physiognomy of Riemannian space when coupled with the condition of the

possibility to measure
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• Will 2014 in his compilation of the various tests scrutinizing General Relativity presented a position of Einstein: ”He

famously stated that if the measurements of light deflection disagreed with the theory he would ”feel sorry for the

dear Lord, for the theory is correct!”” (Will 2014, Introduction). We underline that the conjecture argued here gives

full appreciation to Einstein’s view. General Relativity is not articulating a law of the Lord but in Eddington’s view

is unfolding a theory on measurement. This in some way is reflected in Will’s additional comment:”But compared to

the inner consistency and elegance of the theory, he regarded such empirical questions as almost secondary.” It is the

consistency of the space concept that is reflected by the inner consistency of the theory.

• Will in the conclusion that he draws from The confrontation between General Relativity and Experiment (Will 2014,con-

clusions) states: ”General Relativity has held up under extensive experimental scrutiny. The question then arises, why

bother to continue to test it?” And he continues: ”the predictions of general relativity are fixed; the pure theory con-

tains no adjustable constants so nothing can be changed. Thus every test of the theory is either a potentially deadly test

or a possible probe for new physics.”

• Will’s conclusions state that ”all attempts to quantize gravity and to unify it with the other forces suggest that the

standard general relativity of Einstein may not be the last word.” This in our opinion might be a fallacy. General Rela-

tivity and the theory of elementary particles by assumption are handling distinct realms of physics: General Relativity

is putting its emphasis on the determination of a geodesics which is calculated from an invariant length element gene-

rally assumed to be nonzero 60. This has been anchored by imposing a respective a priori symmetry on the Riemann-

Christoffel tensor which lets the metric gµν appear to be symmetric (including light rays as a boundary phenomenon).

The theory of elementary particles as compiled in the Standard Model and as seen thru the glasses of Cartan’s concept

of complex flat space on the contrary is based on antisymmetric objects that imply ds2 = 0 and that do not admit

any trajectory. Only such isotropic objects imply the existence of spinors which the elementary fermions are identified

with. The validity of Einsteins General Relativity and that of the standard theory of elementary particles thus genuinely

have nothing to do with one another 61. The former one is describing the symmetric aspects of matter, the other one the

antisymmetric aspects of matter. Both theories operate on genuinely excluding realms described by either ds2 6= 0 or

ds2 = 0. Both may prove to be correct under its respective assumptions without putting into question the other one.

10. Mass and the symmetric and antisymmetric nature of matter

We conjecture matter to consist of a symmetric sector and an antisymmetric sector.

The symmetric sector is described by the gravitational interaction of General Relativity, complemented by the alternative

description delivered by Quantum Mechanics. Both these forms of symmetric matter genuinely are equipped with mass.

The antisymmetric sector is responsible for the phenomenon of elementary particles. These objects genuinely are massless as

is supposed in the Standard Model before the advent of the Higgs field.

Mass hence seems to be a phenomenon related to the symmetric part of matter. The question of why fermions in the reality of

experiments acquire mass then reduces to the question where the description of antisymmetric objects overlaps with features

assigned to the symmetric part. This points to the fundamental polar.

We suggest that the mass of fermions be generated by the fundamental polar, ξTCξ, for several reasons:

Stressing the analogy with QED, ξTCξ corresponds to a Feynman diagram with the boson line truncated. This is but the term

representing mass in mass renormalization (Schweber 1962,TBD).

Expressed in covariant variables this term corresponds to the combination of a left-handed and right-handed contribution, just

the way mass is expressed in the Standard Model (Shifflett,2015)

Expressed in contravariant variables this term represents the sum of squares known from SRT to be the ingredients of mass.

The fundamental polar according to this view would provide the scalar field corresponding to the Higgs field.

This supposed to be realistic the fascinating perspective would emerge that mass would be the genuine invariant from which

the interactions ξTC X
(p)
ξ derive as its irreducible representations.

60with the exception of photons.
61Some overlap exists in the trajectory of light which in the view of General Relativity represents a boundary phenomenon and which from the view of

elementary particles stems from a bosonic U(1) field characterizing an interaction. Only in the ray approximation of classical electrodynamics may this field

be represented by a trajectory.
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The question remaining to be answered would then be how mass would get distributed to the individual spinor components.

11. Conclusions

The fondament of physics contrary to common belief is not the comparison of the results of its theories against an exter-

nal entity dubbed Nature. Fact is: For every realm of physics physicists have postulated its own space concept. It serves two

purposes: (i) it allows to construct an invariant that serves as a measuring stick (ii) it allows to encode the condition of the pos-

sibility to measure. It is remarkable to observe how the seesaw of experimental design and theoretical expectation in all these

realms in a straightforward manner did converge towards tracing the physiognomy of the underlying space concept as minted

by the condition of the possibility to measure. Basic for this success is what we call the inversion of measurement: instead

of comparing with some external entity dubbed Nature the experimentally found objects get identified with the mathematical

objects emerging from the condition of the possibility to measure: (i) the gravito-inertial field gets identified with the metric

in Riemannian space (ii) the experimentally found fundamental fermions get identified with the components of a spinor in

various complex dimensions (iii) the quantum mechanical objects have become identified with the mathematical support of

the generators of translations and Galilei-transformations (iv) Maxwell’s electromagnetic field tensor gets identified with the

bivector of flat space. Physicists experimentally find the objects that are predetermined by the condition of the possibility to

measure. In case of General Relativity they observe the BH’s, in case of elementary fermions they find the leptons and quarks

to be identified with spinor components etc. Matter and space are conditioning one another.

The inversion of measurement is getting rid of the metaphysical claim of an entity dubbed Nature which is supposed to exist

independent of physicists and which physicists claim to measure with their apparatuses. It allows to determine the pamorama

of physics to be built on distinct space concepts each delivering its own invariant needed to provide an equivalent for the

measuring stick of classical physics. It allows to determine the relation of Quantum Mechanics and General Relativity as

well as the location of elementary particle physics in the edifice of General Relativity. It allows to find out that QED is not

a quantum theory determined by Plancks action quantum ~ despite the fact that the Feynman rules are interspersed with

occurrences of ~.

The predefinition of the theory within the frame of the space concept led Eddington, the most reknowned physicist of his

time (Chandrasekhar 1983,39), whose 1923 thorough analysis of Einstein’s General Relativity till the 1970’s reached eleven

editions, to call General Relativity a put-up job:

’ ’The whole thing is a vicious circle. The law of gravitation is - a put-up job.” (Edd 1928,145)

Physicists according to Eddington get out nothing they did not put in beforehand. We show that Eddington’s insight derived

from General Relativity applies to the other realms of pysics as well. Measuring men encounter only themselves and their

obsession to approach the world by measuring. This insigt is repeating what Kant published in 1783 in his Prolegomena:

”Der Verstand schöpft seine Gesetze (a priori) nicht aus der Natur, sondern schreibt sie dieser vor.”(Kant 1783,91)

Kant called this a second Copernican revolution. What Kant deduced as a result of a philosophical investigation Eddington

derived by analysing the mathematical structure of General Relativity. Our analysis of the realms of physics besides General

Relativity - elementary particle physics, electrodynamics and Quantum Mechanics - is strengthening this view.

To get rid of the metaphysical foundation of physics by no more referring to Nature is no loss. The journey into the physical

exploitation of different space concepts enabled physicists to lay the foundation for ever richer technologies.
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A. The standard model of elementary particle physics and complex flat space as described by

reflections

A.1. Going complex: spinors and Cartan’s representation of flat space

Whereas Dirac in 1928 introduced spinors into physics by trial and error when guessing the mathematical form the Schrödinger

equation of Quantum Mechanics had to take on to fullfill the requirements of a relativistic treatment Cartan gave a consistent

mathematical treatment starting in 1913 with the systematic investigation of group properties and culminating 1938 in his

groundbreaking book Leçons sur la théorie des spineurs (Cartan 1938), translated to English in 1966 The Theory of Spinors

(Cartan 1981).

Spinors according to Cartan are geometrical entities. They appear when a real space which is characterized by a pure quadratic

form is considered to be complex. At this moment vectors of length zero are entering the stage. In real flat space objects with

length zero are nul objects with all their components necessarily being zero. 62

Making the transition from real to complex the unit basic vectors of real flat space automatically will become objects with

length zero, called isotropic vectors. When spanning complex flat space by isotropic vectors spinors appear. The spinor

components are the coefficients needed to secure that by adding new dimensions the resulting vectors stay isotropic.

The successive endorsement of new dimensions leads to a recursive formula which makes the spinor components significantly

deviating from the behaviour of vector components. Whereas vector components have a single index referring to the space

dimension the spinor components own a compound index which refers to either a subset of or all of the dimensions involved.

For one complex dimension corresponding to real dimension n = 2 or 3 the spinor components are (ξ0, ξ1). For two complex

dimensions (n = 4, 5) there are four components (ξ0, ξ1, ξ2, ξ12), for three complex dimensions we find 8 components

(ξ0, ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123) and so forth. For complex dimension ν corresponding to real dimension n = 2ν, 2ν + 1 the

number of spinor components grows with 2ν . 63

A.2. Mathematical basics

A.2.1. The transition from real to complex linear space

Real n-dimensional flat spaces En are constituted by the existence of a quadratic form 64 Φ = (x1r)
2 + . . . + (xnr )

2. The

quadratic form characteristic for a complex space is taken by Cartan to be

F ≡ zizi′ + z20 (i, i′ = 1 . . . ν) (117)

where zi, zi′ are vectors representing paired complex dimensions. z0 designates an unpaired dimension taken to be real by

assumption.

Choosing zi and zi′ to be the complex conjugate to each other one easily effects the transition to a real space of dimension

2ν+1. Setting the unpaired coordinate z0 identically to zero leads to the real space of dimension 2ν. The spinor components

are not affected by this transition. The same spinor applies to spaces with and without an unpaired dimension.

A.2.2. The emergence of isotropic vectors

Switching to complex spaces introduces new geometrical objects that are not known from real euclidean spaces: objects

of measure zero, in our case vectors of length zero, without all components being zero. Such isotropic objects provide the

geometrical foundation of spinors.

The transition from complex spaces with coordinates x0, x1, x2, . . . xν , x1
′

, x2
′

, . . . xν
′

to real euclidean spaces with an

orthogonal coordinate system x0r , x
1
r, x

2
r , . . . x

n
r is done by choosing the basis vectors ~e i, ~e i

′

as complex conjugate and

62Another situation is produced if the space is endowed with a pseudo-euclidean metric like in SRT. This allows for objects like the photon wave vector

kµ with the property kµkµ = k20 − ~k2 = 0.
63In the Minkowski space of SRT a special situation arose: the four components of the Dirac spinors ressemble the four components of the vectors in this

space. This made it easy to consider the distinction between spinors and vectors to reflect a purely technical difference in transformation properties which

unhappily can’t be avoided.
64The subscript r denotes coordinates in real space.
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establishing a pairwise mapping between the correlated complex basis-vectors ~e i, ~e i
′

and the real basis vectors ~er
2i−1, ~er

2i
:

~e i ↔ 1

2
(~er

2i−1 + i ~er
2i) (118)

~e i
′

↔ 1

2
(~er

2i−1 − i ~er
2i) (119)

Taking the real basis vectors as orthonormal, (~er
i ~er

k) = δik , the basis vectors of the complex space automatically get

isotropic

(~e i)2 = (~e i
′

)2 = 0 (120)

and orthogonal

(~e i~e k) = (~e i
′

~e k
′

) = (~e i~e k
′

) = 0 for (i 6= k) (121)

The one crucial exception are the basis vectors that form a complex conjugate pair. They are not orthogonal but fulfil

~e i~e i
′

= 1/2 (122)

The unpaired real basis vector is orthogonal to all other basis vectors. It is normalized to 1:

(~e 0)2 = 1 (123)

The appearance of isotropic vectors, i.e. vectors of length zero 65 according to Cartan is the paradigmatic geometrical base of

the existence of spinors.

A.2.3. Spinors are the constituting coefficients of the isotropic ν-plane

The isotropic vectors span a hyperplane of maximal dimension ν, the isotropic ν−plane. It is the same in E2ν+1 as in E2ν .

The explicit geometrical construction follows a recursive procedure. The coefficients are the components of a spinor ξα,

where α signifies a compound index.

To understand the geometrical nature of spinors and the nature of the compound index it makes sense to take a short glance

on this recursive procedure. It proceeds by a successive nesting of linear forms ηα that determine the isotropic ν-plane:

η0 ≡ ξ0x
0 +

∑

k

ξkx
k = 0 (k=1 . . . ν) (124)

ηi ≡ ξ0x
i′ − ξix

0 +
∑

k

ξikx
k = 0 (125)

ηij ≡ ξix
j′ − ξjx

j′ +
∑

k

ξijkx
k = 0 (126)

ηijk ≡ ξijx
k′ + ξjkx

i′ + ξkix
j′ − ξijkx

0 +
∑

h

ξijkhx
h = 0 etc., (127)

beginning with the constants ξi and ξij and supplementing additional coefficients by agglomerating the single indices to ever

higher nested compound indices α = ik1ik2 . . . which reflect the nesting status:

ξ0ξijk = ξiξjk − ξjξik + ξkξij (128)

ξ0ξijkh = ξijξkh + ξjkξih + ξkiξjh etc. (129)

There are 2ν coefficients ξα that provide the components of the spinor ξ.

The index α of a spinor ξα is a compound of single indices that are related to the coordinate axes 66. Thus besides the

single component ξ0 and the single indexed components ξi (i = 1, 2, . . . ν), that formally ressemble the component structure

familiar from vectors, spinors in general have additional components ξi1i2...ip (p = 2, . . . , ν). They have the property of

either changing sign or being unaltered under odd or even permutations of the indices.

These spinor components provide the mathematical base for what physically will be called fermions.

65Physics is a measuring discipline and the scalar product is a basic tool to describe its objects. Introducing objects with no measuring protocol at hand is

what made spinors a strange experience for physicists.
66For example a spinor for ν = 2 (E4 and E5) is composed by 2ν = 4 components (ξ0, ξ1, ξ2, ξ12); a spinor for ν = 3 (E6, E7) has 2ν = 8

components (ξ0, ξ1, ξ2, ξ3, ξ12, ξ13, ξ23, ξ123).
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A.3. The emergence of the Dirac equation

A.3.1. The defining equation of spinors

Besides the spinors we have 2ν antisymmetric linear forms ηi1i2...ip that when equated to zero constitute the isotropic ν-plane.

Every equation of the 2ν linear forms ηi1i2...ip does establish a relation between the spinor components and the coordinates

x0, xi, xi
′

, which is linear in the coordinates and linear in the spinor components. Eq.(124) till (129) addressed them as a

matrix consisting of spinor components operating on the vectors (x0, xi, xi
′

) spanning the spaceE2ν+1. By taking the ξalpha
to be independent variables with the spinor components ξα given a definite order and reordering the set of equations along

these ordered spinor components we may invert the set of equations:

Xξ = 0 (130)

This is the defining equation for the isotropic ν-plane. It describes the spinor components ξα that provide the coefficients that

allow to constitute this plane.X is a matrix whose elements, except in cases where they are zero, are - apart perhaps from the

sign - equal to one of the coordinates x1, . . . , xν , x1
′

, . . . xν
′

, which may be regarded as the contravariant components of a

vector x. 67

By equation (130) each vector x gets associated with a matrix X of rank 2ν with 22ν elements.

The switch to convert vectors into matrix representations 68 is an essential backbone of spinor theory. In spinor space the

role of the vectors is taken over by associated matrices 69. For ν = 2 and real basis vectors we recover the familiar Dirac

representation of a vector pµ by 6p = γµp
µ.

There are some important rules that regulate the relation between vectors and their associated matrices 70. We especially need

one: let X and Y be the associated matrices of the vectors x and y then the scalar product of both vectors gets associated

with a matrix

(xy) =
1

2
(XY + Y X) (132)

If two vectors are orthogonal their associated matrices hence will anticommute. Anticommuting matrices in the spinor calculus

occupy the role of orthogonal basis vectors.

The square of a matrix X associated to the vector x thus equals the square of the vector: X2 = x2. This allows to infer that

the vectors that satisfy eq.(130) are isotropic because

XXξ = X2ξ = x2ξ = 0 which implies x2 = 0 (133)

Two important rules are to be noted: let X and Y be the associated matrices of the vectors x and y then the scalar product of

both vectors gets associated with a matrix

(xy) =
1

2
(XY + Y X) (134)

If two vectors are orthogonal their associated matrices hence will anticommute. Anticommuting matrices in the spinor calculus

occupy the role of orthogonal basis vectors. As an immediate consequence we get te relation:

(x2)ξ = XXξ (135)

stating that the vectors of the isotropic ν-plane (Xξ = 0) necessarily are isotropic (x2 = 0).

67Taking ν = 2 and arranging the components of the spinor according to ξ0, ξ1, ξ2, ξ12 we get (Cartan 1981, 81):

X =









x0 x1 x2 0

x1′ −x0 0 x2

x2′ 0 −x0 −x1

0 x2′ −x1′ x0









(131)

68Note that we will eventually continue to use the name vector when we are speaking of the associated matrix of the vector.
69We follow Cartan by using a capital letter X to indicate the associated matrix of a vector x.
70E.g. in three dimensions the bivector constructed from the vectors ~x und ~y with components x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1 is associated

with a matrix i
2
(XY −Y X). The determinant of an associated matrix X may be equated with the negative scalar product of the vector x. (Cartan 1981,44)
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A.3.2. The representation of vectors by associated matrices

Let the associated matrices of the isotropic basis vectors ~e 0, ~e i, ~e i
′

be the matrices H0, Hi, Hi′ .

The associated matrices Hi and Hi′ of the isotropic basis vectors referring to the dimension i and i′ geometrically represent

a reflection on the hyperplane that is perpendicular to the respective basis vectors ~e i, ~e i
′

.

Each vector x then may be represented by the associated matrix

X = x0H0 + x1H1 + . . .+ xνHν + x1
′

H1′ + . . .+ xν
′

Hν′ (136)

decomposed in terms of reflection operators.

The decomposition (136) exhibits the central role that reflections are playing in representations based on spinors.

From rule (132) and from eq.(120) - (123) we get rules for the reflection matrices:

H2
0 = 1, H0Hk = −HkH0, H0Hk′ = −Hk′H0 (k 6= 0) (137)

HiHk = −HkHi, Hi′Hk′ = −Hk′Hi′ (138)

where the last equation for i = k means H2
i = H2

i′ = 0 71 . But for the conjugate pairs we get:

HiHk′ +Hk′Hi = δik (139)

A.3.3. Switching to real space: the emergence of the Clifford algebra

Switching from an isotropic to the orthonormal system of real unit basis vectors (~e ir~e
k
r ) = δik of Sec.(A.2.2) we get the real

equivalents Ar of Hi, Hi′ .

e.g for ν = 2:

A1 = H1 +H1′ (140)

A2 = i(H1 −H1′) (141)

A3 = H2 +H2′ (142)

A4 = i(H2 −H2′) (143)

Using rule (132) for the associated matrices Ai we immediately obtain the commutation rules

AiAk = −AkAi (i 6= k); (Ai)
2 = 1 (144)

These operators thus form a Clifford algebra (Cartan 1981,83). For ν = 2 these are the well known Dirac γ-matrices 72.

The effect on the vector X of a reflection A in the hyperplane π normal to the unit vector A is given by the formula

X ′ = −AX A (145)

The effect of this reflection on a spinor ξ is given by the formula

ξ′ = Aξ (146)

This operation unavoidably is two-valued since we may take either A or −A as the unit vector normal to π.

71It is helpful to know that H0 = HT
0 and Hi′ = HT

i .
72For (ν = 2 viz. n = 4) the associated matrices P correspond to the Dirac nomenclature 6p = γµpµ. The Dirac matrices γµ in this case are identical to

the reflection operators Hi, Hi′ . See Cartan (1981,134 (sect.157) for an explicit representation in configuration space).
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A.4. The emergence of left- and right-handed spinors

A.4.1. Classes defined by reflection along the unpaired dimension

The reflection operator H0 operating along the unpaired dimension z0 that represents the extension from E2ν to E2ν+1

acquires a special role: Operating on a spinor ξα it gives

H0ξα = ±ξα (147)

depending on whether the compound index α contains an even or an odd number of single indices.

The spinors in spaces with dimension 2ν hence decompose into two classes of semi-spinors whose components have either

an even or an odd number of single indices in their compound index. This decomposition is the mathematical basis for the

existence of two classes of either left-handed or right-handed fermions.

A.4.2. Semi-spinors in even-dimensional spaces: distinguishing left- and righthanded spinors

Let us pass to E2ν : we may order the spinor components according to first noting all components with even number of

subindices, followed by all components with uneven number of subindices. Then because all the reflection operatorsHi, Hi′

commute withH0, we can distinguish two groups of semi-spinors, which by rotation get transformed onto itself, representing

left-handed and right-handed spinors. For ν = 2 (E4) we get the semi-spinors of the first type (ξ0, ξ12) and of the second

type (ξ1, ξ2), for ν = 3 (E6) we get the first type to be (ξ0, ξ12, ξ13, ξ23) and the 2nd type to be (ξ1, ξ2, ξ3, ξ123).

A.4.3. Antiparticles and right/left-handed semi-spinors

In the nomenclature of the Standard Model 73 we have the following relations between Dirac spinors Ψ and left/right handed

(Weyl) semi-spinors ΨL, ΨR:

Ψ =

(

ΨL
ΨR

)

(148)

The antiparticles are denoted by upperscript ”c” and defined by:

Ψc = −iγ2Ψ∗; leading to ΨcL = −iσ2Ψ∗
R; ΨcR = iσ2Ψ∗

L (149)

Expressed in semi-spinor components this reads:

ΨcL1 = −Ψ∗
R2 , ΨcL2 = Ψ∗

R1 , ΨcR1 = Ψ∗
L2 , ΨcR2 = −Ψ∗

L1 (150)

The antiparticle components of left-handed particles in the Standard Model are thus the complex conjugate of the components

of right-handed ones and vice versa, with their position interchanged, 1 ↔ 2, and with each occurrence of L1 adopting a

minus sign. 74

A.5. Antisymmetric objects in flat space: p-vectors

The spinors are totally antisymmetric objects. We may introduce another type of a totally antisymmetric object, the p-vector.
75. p-vectors are the antisymmetric extension of the vector concept. For p = 1 we get the familiar vector components, for

p = 0 we take the unit 1. For p = 2 we will encounter e.g. the antisymmetric field tensor Fµν .

73 γµ =

(

0 σµ

σ̃µ 0

)

σµ =

[(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)]

, σ̃µ =
[

σ0,−σ1,−σ2,−σ3
]

74For conjugate spinors see Cartan, p.100 (E2ν+1), p.123 (E2ν )
75Bivectors vw correspond to the wedge product v ∧ w. Trivectors vwu to v ∧ w ∧ u (s. Baylis 4.2.1, in Rafal Ablamowicz, Garret Sobczyk, Lecture on

Clifford (Geometric) Algebras and Applications, R. Ablamowicz and G. Sobczyk, (Eds.) Birkhauser, Boston, 2004 (ISBN 0-8176-3257-3) (Baylis 44.png)
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The associated matrices of these antisymmetric objects X
(p)

are the equivalent of the bosons that we encounter in the Standard

Model. Like the fermions, they are structures emerging from isotropic hyperplanes, i.e. from objects with length zero. This

makes these bosons to genuinely become massless objects.

Lets recapitulate a short explanation of p-vectors. Its components are composed by the products of the n contravariant (or

covariant) components of p vectors x, y, . . . , z (Cartan 1981,16). By building the matrix









x1 x2 . . . xn

y1 y2 . . . yn

. . . . . . . . . . . .
z1 z2 . . . zn









(151)

the components of the p-vector will consist of all the (p × p)-determinants that may be built from choosing arbitrary p
columns out of the n columns and putting the newly defined components into a definite order.

The associated p-vector X
(p)

, i.e. its associated matrix, can be represented by the matrix

1

p!

∑

±Xi1Xi2 . . . Xip (152)

whereXi (i = 1, . . . , p) represent the associated matrices of the p vectors xi and the sum extends over all permutations of the

indices 1, 2, . . . , p the sign being + or − according to whether the permutation is even or odd. Such a matrix has as elements

linear combinations of the components of the p-vector. If the p vectors are orthogonal in pairs, the matrix associated with the

p-vector equals X1X2 . . . Xp. The matrices associated with two distinct p-vectors are themselves distinct.

p-vectors are irreducible with respect to the group of rotations. The elements of X
(p)

are linear combinations of the components

of the p-vector. By a rotation they are linearly transformed amongst themselves. The linear combinations which give the

elements are linearly independent with respect to the nCp components of the p-vector (Cartan 1981,85).

Under the reflection on the hyperplane normal to the unit vector a the p-vector transforms as

X
(p)

′
= (−1)pA X

(p)
A (153)

In writing a rotation as the product of an even number of reflections, S = A2kA2k−1 . . . A2A1 we easily get the formulae

X
(p)

′
= S X

(p)
S−1; ξ′ = Sξ (154)

and for a reversal we get

X
(p)

′
= (−1)pT X

(p)
T−1; ξ′ = Tξ (155)

where T is the product of an uneven number ≤ 2ν + 1 of matrices associated with unit vectors.

B. The Standard Model: a hybrid of reflections and rotations

B.1. Analyzing the Standard Model Lagrangian

To get a deeper insight into this alternate representation let’s remind the structure of the Standard Model. For orientation

reasons we use the Standard Model Lagrangian as extracted by Shifflett (2015) to be our pilot Lagrangian. This Lagrangian

comprises a fundament of spinorial interaction terms corresponding to what we would expect from Cartan. On top of this

basement there are two layers interlaced that represent the action of SU(2) and SU(3) by means of their generators.

Parity violation has been built in explicitly by referring separately to left handed and right handed spinors, indexed e.g. as eL
and eR. The chosen setup starts from the left handed doublets representing SU(2)-breaking by using the semi-spinors νL and

eL (leptons) and uL and dL (quarks):

leptons (ν̄L, ēL)iσ̄
µDµ

(

νL
eL

)

(156)

quarks (ūL, d̄L)iσ̄
µDµ

(

uL
dL

)

(157)
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Apart from having the formal envelope corresponding to SU(2) it reflects the typical product of two semi-spinors coupled to

the associated matrix

iσ̄µDµ; σ̄µ = (σ0,−σ1,−σ2,−σ3) (158)

The 2-component semi-spinors νL, eL, uL and dL contract into the σ-matrices thus effecting the coupling to the associated

matrix D. This is the overall basic scheme as expected from Cartan’s construction by means of reflections. The sum over the

indices (µ = 0, . . . , 3) indicates that we are operating in spacetime, ν = 2(n = 4).

B.1.1. Interlacing reflections with rotations induced by SU(2)

On top of this basic scheme defined by reflections the generators of SU(2) and SU(3) are introduced by incorporating their

action into the associated matrix σµDµ by using the principle of generalized gauge invariance. Let’s first have a look at the

electroweak interaction:

leptonic: Dµ

(

νL
eL

)

=

[

∂µ − ig1
2
Bµ +

ig2
2

W µ

](

νL
eL

)

(159)

W µ, a 2x2 matrix, is built up from the 3 generators of SU(2)

W µ =W b
µσb σb (b = 1, . . . , 3) (Pauli 2x2 SU(2) generators) (160)

contracting into the electroweak 2-component vector.

The field Bµ represents the generator of U(1) acting as the identity with respect to the electroweak vector. The (V-A)-model

became a key ingredient into the standard model when it was realized that the V-A-theory had to be applied not to the

nucleons, but to the constituents of the nucleons, the quarks (see eq.(161)).

B.1.2. Interlacing SU(3)

The hybrid technique of interlaced spaces produces a hidden pattern when the quarks uL and dL get coupled to the strong

interaction SU(3)

quark: Dµ

(

uL
dL

)

=

[

∂µ +
ig1
6
Bµ +

ig2
2
W µ + igGµ

](

uL
dL

)

(161)

The terms Bµ and W µ exert a similar action on the SU(2)-vector (uL, dL) like they do.ö in the leptonic case. But now there

is a third layer on top of the other features: Gµ contains the generators related to SU(3) which makes it to be a 3× 3 matrix:

Gµ = Gaµλa λa (a = 1, . . . , 8) (Gell-Mann 3× 3 SU(3) generators) (162)

What spinors is this matrix acting on? Like all the other semi-spinors uL and dL are semi-spinors contracting into the σµ of

eq.(158). But in addition uL and dL get loaden with an index (r, g, b) referring to the three basic entities of the fundamental

representation of SU(3). It is these color indices the generators λa of SU(3) are contracting into.

The Standard Model thus is superimposing a layer of rotations on the basic layer of reflections.

B.1.3. Ad hoc handling of right handed semi-spinors

The inclusion of parity violation requires the different behaviour under SU(2). This is the reason why the index ”L” appears

on the 2-component spinors in eq.(156), p.50. For sake of completeness we reproduce the way the Lagrangian makes right-

handed spinors act as singlet terms:

leptonic ēRiσ̄
µDµeR + ν̄Riσ̄

µDµνR (163)

quarks ūRiσ̄
µDµuR + d̄Riσ̄

µDµdR (164)

No W -boson terms representing SU(2) appear in all these right-handed interactions. Consequently they act on singlets

νR, eR, uR, dR and not on the respective isospin doublets. The terms for the U(1) generators Bµ are chosen to be different

for all the singlets:

quarks: DµuR =

[

∂µ +
i2g1
3
Bµ + igGµ

]

uR (165)
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quarks: DµdR =

[

∂µ − ig1
3
Bµ + igGµ

]

dR (166)

For right-handed leptons the gluon term is missing:

leptons: DµeR = [∂µ − ig1Bµ] eR (167)

leptons: DµνR = ∂µνR (168)

B.1.4. The transition to generators

The fact that the right-handed semi-spinors required another interaction pattern than the left-handed semi-spinors forced

to handle all these interactions on a semi-spinor base. This meant to use σ- instead of γ-matrices, both still representing

reflection operators. But the Cartan reflection operators σi are identical to the generators of SU(2).

An infinitesimal SU(2)-transformation around the identity S = E − idxiσi is featuring the generator σi embedded into an

associated matrix dxiσi (Tung 2003,127). With respect to SU(2) we thus find an equivalence between a representation using

reflection operators and rotation generators.

The shift in interpretation consists in taking the σi to be generators of SU(2) 76 instead of reflection operators built up from

Cartan’s Hi, Hi′ .

The symmetry SU(2) entered the scene, inducing the shift from a representation of bosons by associated matrices built up by

reflections to a representation by vector fields contracting into generator matrices instead of associated matrices.

But the formal equivalence of a representation in terms of associated matrices or a representation by generators of rotations

ends for SU(3) and higher symmetries. The generators of SU(n) are n2 − 1 matrices with dimension n. The elementary

objects are thus to be represented by vectors of dimension n which the generators contract into. The dimension of spinors

according to the geometrical definition of Cartan but grows with 2ν . There is no room for a spinor of dimension 3. What for

a dimension two appears to be an isomorphism between the vector representation of SU(2) and a spinor representation for

ν = 1 or a semi-spinor representation for ν = 2 fades away for higher dimension. 77 There is no straightforward correlation

between the Cartan dimension ν and the symmetries SU(ν).

Generalized gauge invariance then served as a guide to collect U(1), SU(2) and SU(3) under the same roof representing ex-

tensions of the translation generator ∂µ
78. These rotations determine the apperception of the Standard Model as representing

SU(3)c ⊗ SU(2)⊗ U(1)Y . The representation in terms of generators captured the interpretation of the Standard Model.

B.1.5. The gap in interpretation

Although expected to be mostly equivalent because a rotation is equivalent to two reflections a gap exists in interpretation

between the Standard Model which is based mostly on rotations and the SMC based on flat space defined by reflections.

Leaving reflections and spinors confined to the basement and installing on top a layer in terms of generators of rotations

contracting into vectors induced a far-reaching shift in interpretation of the Standard Model. Representing fermions as being

components of vectors that contract into generators of rotations denies the emergence of particles from the space concept.

They become particles that exist in space supporting the Newtonian view of matter.

76Rotations in 3 dimensions may be written as = ei
θ
2
~n~σ where ~n denotes the rotation axis. This representation by reflection operators is the unique way

to make the law of group multiplication of rotations transparent:

S3S2S1 = ei
θ3
2

~n3~σei
θ2
2

~n2~σei
θ3
2

~n1~σ (169)

where ~n1, ~n2 ~n3 are the rotation axes of three subsequent rotations.
77In these regions there exist socalled accidential isomorphisms only between the classical Lie groups: Spin(3) ∼ SU(2), Spin(4) ∼ SU(2) ⊗

SU(2), Spin(6) ∼ SU(4) (Zee 2016,563: SO(6) ∼ SU(4)) where Spin(n) is shorthand for Spin(Rn). (see https://en.wikipedia.org/wiki/Spin group).

78This led to the dominance of (p = 1) vector- instead of multivector representations of bosons in the Standard Model.
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C. QED is not a quantum theory

C.1. 2nd quantization as a back salto from Quantum Mechanics into flat space

C.1.1. The disappearance of the quantum mechanical commutator [q, p] = i~ in QED

The commutator [q, p] = i~which has become so famous for quantum mechanics has been introduced into QED by quantizing

the e.m. field according to (183). This directly led to the factor ~ in the propagator (184). But miraculously all the factors

~ got absorbed into the e.m. coupling constant α. This obviously is a precondition for the identification of QED as a theory

resulting from an analysis of flat space which genuinely doesn’t even know about ~. But it is instructive to look at the harmonic

oscillator to get an impression of how this works. By setting

a† =
1√
2
(
p

~
+ iq), a =

1√
2
(
p

~
− iq) (170)

we easily from [q, p] = i~ get the relation:

[a, a†]− = 1 (171)

which is independent on ~. It shows the signature of creation and annihilation operators of bosons.

The definition in eq.(111) shows that by introducing the combination p/~ the original meaning of the covariant form k has

been restored as being a one-form representing the generator of translations k = −i∂q. The creation and annihilation operators

are nothing but representations of the genuine relation that connects covariant and contravariant entities, [∂q, q]− = 1. This

elementary commutator does express the basic multiplication rule of differential calculus. Identifying the covariant one-form

k as the generator of translations k = −i∂q we get −i[k, q] = 1 as the elementary commutator relating tangent space and

its dual. By using its fundamental postulate p = ~k Quantum Mechanics gets the commutator to be [q, p] = i~ 79 Thus

~ is organizing the transition from covariant to contravariant entities and vice versa, i.e. from waves to particles and vice

versa. QED but does not need to invoke this transition except for convention. It is handling the distinction between wave and

particles by means of commutators with different sign between fermionic and bosonic creation and annihilation operators.

No ~ is needed.

C.2. The framework of QED

C.2.1. The basic assumptions of QED

We recapitulate the basic assumptions of QED:

We start with a time displacement operator U(t, t0) defined by |t >= U(t, t0)|t0 > where |t > is the state of the system at

time t . U(t, t0) has to be unitary to fulfill the conditions on a probability interpretation. An infitesimal time displacement

then reads

U(t0 + δt, t0) = 1− i

~
Hδt (172)

where the Hamiltonian H has to be hermitian to guarantee U to be unitary. The parameter ~ in this expression is a pure

convention to make the time displacement operator H an energy. We easily recognize the character of this convention: it

serves to allow the coefficient of t to be taken as contravariant instead of a covariant entity.

The time development in the Heisenberg picture then gets controlled by (Schweber 1962,334):

U(t, t0) = P
(

e
− i

~

∫
t

t0
Hint(t

′)dt′
)

(173)

Hint is the interaction Hamiltonian in the Dirac picture and P means a specific ordering of the operators. The ordering

operator P had to be introduced because the fields are made operators defined by commutation relations.

79with a sign change since Quantum Mechanics has to perform the transit from a covariant to the contravariant entity p.

This transition unfolds the secret of Quantum Mechanics. Quantum Mechanics is proposing a surrogate in flat space for the gravito-inertial field of General

Relativity by postulating a connection between contravariant and covariant entities pµ = gµν~kµ. By its very nature General Relativity establishes such a

connection by means of the gravito-inertial field as pµ = gµνpµ. Quantum Mechanics by operating in flat space hasn’t to care about the distinction between

covariant and contravariant entities.
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Inserting the Hamiltonian of QED

Hint = eψ̃γµAµψ (174)

with eψ̃γµψ the current that gets coupled to the e.m. potential Aµ (Schweber 1962,441), switching to densities and changing

the time integral from dt to dx0 we get for the S-matrix S = U(∞,−∞):

S = P
(

e−
ie
~c

∫
d4xψ̃γµAµψ

)

(175)

We note that the Hamiltonian which in QED had to be postulated possesses the characteristic form that a Cartan invariant in

spinor space automatically must take on. Moreover the kinematic variable Aµ takes the characteristic form 6A = γµAµ of a

Cartan associated matrix.

Our conjecture that QED is representing nothing but flat space requires that the amplitudes do not depend on ~. To show that

~ in fact is completely absorbed into the e.m. coupling constant e2/~c we have to investigate the appearance of propagators

within the feynman diagrams (Schweber 1962,471)

C.2.2. Quantization of fermion fields

Developping the Schrödinger field operators ψ, ψ̃ in terms of a complete set of eigenfunctions wn(x) of the free-particle

Dirac equation (Schweber 1962,219) introduces the spinors wr(p) (r = 1, 2, 3, 4)

ψ(x) =
1√
V

∑

n

√

m

|En|
bnwn(x) (176)

wr(x) = wr(p)eipx; (r = 1, 2) (177)

wr(x) = wr(p)eipx; (r = 3, 4) (178)

Quantization is achieved by interpreting the expansion coefficients as creation and annihilation operators in order to fulfill the

Pauli exclusion principle:

[bn, b
∗
m] = δnm; [bn, bm] = [b∗n, b

∗
m] = 0 (179)

In passing we note that in QED the Pauli principle had to be postulated ad hoc. But (179) are the commutation relations of

reflection operators Hi, Hi′ which automatically induce the Pauli principle (see sect (3.2.2)), p.14. The fields then obey the

equal time commutation relation

[ψ(x), ψ̃(x′)]+ x0=x′

0
= γ0δ

(3)(x− x′) (all other commutators zero) (180)

Switching to Heisenberg operators, requiring relativistic invariance and generalizing from equal time to arbitrary space-like

separations we finally get (Schweber 1962,276):

[ψ(x), ψ̃(x′)]+ = −iS(x− x′) for (x− x′)2 < 0 (181)

C.2.3. Quantization of boson fields

In QED the canonical quantization procedure for boson fields in strict analogy to Quantum Mechanics is postulating

[Πµ(x), Aν (x
′)]x0=x′

0
= +i~cδµν δ(x− x′) (182)

Covariantly formulated this becomes

[Aµ(x), Aν(x
′)] = −i~cgµνD(x− x′) (183)

with D(x − x′) = ∆(x − x′) for boson mass µ = 0 (Schweber 1962,276).
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C.2.4. Decomposition into normal products

The right hand sides of the commutators (181) and (183) are the propagators. In the series expansion of the exponential

care has to be given to the ordering of the operators. Decomposing the S-matrix into normal products N(, ) in which all the

creation operators standing to the left of all annihilation operators guarantees that for any given initial and final state with

a definite number of free particles with specified spins and momenta there will be one and only one normal product with a

nonzero matrix element between these states. The enormous usefulness of Feynman diagrams results from the fact that they

are a concise way of representing a normal product (Schweber 1962,435). The necessary transit from the Dyson time ordered

productP in (173) to normal products gives rise to the appearance of the right hand sides of (181) −1/2SF (x−x′) and (183)

−1/2 ~cDF (x − x′)gµν as propagators in the Feynman rules 80 in configuration space (Schweber 1962,471). In momentum

space they read (Schweber 1962,478):

boson propagator: − i~c

(2π)4
1

k2 + iǫ
gµν (184)

fermion propagator:
i

(2π)4
1

γ · p−M + iǫ
(185)

The result is that even though the time dependend Dirac equation shows an ~ dependence, the fermionic propagator does

not show up any relation to ~. The photon propagator but shows a factor ~c. This amounts to a factor
√
~c per knot for any

internal photon line, since such a line does connect to two knots.

C.2.5. External photon lines

There is a second source for the appearance of ~ in the amplitudes resulting from an external photon (Schweber 1962,478):

ǫ(λ)µ (k)
(~c)1/2

(2π)3/2
1

√

2|k0|
(186)

Every external photon accordinly contributes with a factor
√
~c per knot.

Thus we get the overall result, that every photon line, whether internal or external does contribute a factor
√
~c per knot.

C.3. The Feynman rules show: the squared amplitudes are independent on ~

The series expansion of the S-matrix (175) in powers of the exponent gives a factor (−ie
~c )

n, where n is the number of knots

of the respective Feynman diagrams. The Feynman rules but inform us that there is an additional factor
√
~c at every knot

coming either from an external or an internal photon line. Any knot thus brings in a factor

(
−ie

√
~c

~c
)n = (

−ie√
~c

)n (187)

The squared amplitude of the n-th order approximation thus turns out to obey a pure dependence on the e.m. coupling contant:

|M |2 ∼
(

e2

~c

)n

∼ αn (188)

This is the well known base of the successfull series expansion of the scattering amplitudes of QED in powers of the e.m.

coupling constant. What we would like to stress is that the appearance of ~ in the Feynman rules is spurious and gets absorbed

into the e.m. coupling constant αem. The following quotation might give a glance on the widespread misjudgement of the

influence of Quantum Mechanics on QED:

”Feynman rules are the main tool of the contemporary particle theorist. These rules incorporate the basic concepts

of quantum mechanics...” (Veltman 2003,246)

αem but is a constant representing flat space, which does not depend on quantum mechanics. QED though evolving from

Quantum Mechanics by building on associated matrices and Cartan invariants made a back salto and is based on the concept

of flat space as constituted by reflections.

80The index ”F” is defined as DF (x) = +2iD(+)(x) for x0 > 0 and DF (x) = −2iD(−)(x) for x0 < 0 wit (+) and (−) the usual positive and

negative frequency parts (Schweber 1962,442).
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C.3.1. The spectrum of the hydrogen atom

As we indicated (sect.A.3) , the time-independent Dirac equation

(6p− e/c 6A−mc)ψ = 0 (189)

has its origin in the defining equation of spinors. As a consequence the dash appears which denotes that the Cartan associated

matrices have to be used in place of the familiar kinematical variables.

The energy levels of the hydrogen atom without radiative corrections included may be calculated directly from the Dirac

equation (189) with the result 81 (Schweber 1962,104):

En,j = mc2

(

1 +
α2Z2

(n′ +
√

(j + 1/2)2 − α2Z2)2

)
1
2

n′ = 0, 1, 2 . . . ; j =
1

2
,
3

2
, . . . (190)

No ~ dependence is found in these energy levels. The resulting formula may be approximated in two steps which are easy to

follow to get the characteristic form that defines the Rydberg constant:

En,j = mc2
(

1 +
α2Z2

(n′ + (j + 1/2))2

)
1
2

(191)

En,j = mc2
(

1− 1/2
α2Z2

(n′ + (j + 1/2))2

)

(192)

Thus the emission spectrum is given by

∆E = −mc
2α2Z2

2

(

1

(n′ + (j + 1/2))2
− 1

(n′′ + (j + 1/2))2

)

(193)

This shows that also the results gained with the help of the Dirac equation are expressed by α and not by ~.

The factor in front of the bracket in (193) is the Rydberg constant in terms of energy. It shows no ~-dependence in spite of

familiar knowledge that the Rydberg constant involves ~.

It is a special presentation of the results of QED which introduces ~ and erroneously makes QED appear to be a quantum

theory. The same applies to the immediate results of the Dirac equation. We choose three examples to demonstrate how this

misleading appearance of ~ comes into place, the Rydberg constant, the Compton scattering and the anomalous magnetic

moment of the electron. The first case is based on the Dirac equation, the latter ones on the quantized field theory.

C.3.2. The Rydberg constant

The familiar Rydberg constant is defined to be 1/λ. The calculation in the last section (sect.C.3.1) refers to no ~-dependence.

But the factor in (193) conventionally gets divided by the conversion factor hc to give the familiar result

R∞ =
mc

h

α2

2
Z2 (194)

This result displays an apparent dependence on the action quantum where there is actually no dependence. The reason for

the need of the action quantum is the fact that the familiar representation in terms of 1/λ insists to use a covariant entity

which belongs to the photon wave vector kµ. It requires the formula pµ = ~kµ of Quantum Mechanics to translate from the

contravariant energy expressed in terms of mc2 to the covariant entity [cm]−1.

81Although a consistent one-particle interpretation for the Dirac equation can be given only in the absence of interactions, the solutions of the Dirac

equation in external fields play an important role in the formulation of QED.
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C.3.3. Compton scattering

The amplitude of Compton scattering as given by Feynman rules in second order approximation is

Rab = δ(4)(p2 + k2 − p1 − k1)
( α

2πi

) 1
√

2|k0|2
1

√

2|k0|1
m

√

E(p1)E(p2)
w̃s2 (p2) [spin-polarization terms]ws1 (p1) (195)

This clear cut dependence on the e.m. coupling constant α becomes transformed into parameters that allow the familiar

physical comparison with entities known from microphysics and quantum mechanics. The coupling constant e2/~c gets

dismantled into the classical electron radius r0 = e2/4πmc2 and the superfluous ~c accomodated under the square roots to

combine with each |k0| to give ω = ~c|k0|. The amplitude thus gets displayed as 82 (Schweber 1962,488)

Rab = δ(4)(p2 + k2 − p1 − k1)
r0
2πi

m2

√
E1E2ω1ω2

w̃s2 (p2) [spin-polarization terms]ws1 (p1) (196)

This straightforwardly leads to the well known Klein-Nishina formula (Schweber 1962,491)

dσ = r20

(

ω2

ω1

)2

FdΩ (197)

with the classical Thomson formula as a non-relativistic limit

dσnr = r20 cos
2Θ dΩ (198)

Every hint to flat space as the generator of spinors has volatilized in favor of a description in terms of geometrical properties

of classical particles that live in space.

C.3.4. The anomalous magnetic moment of the electron

A similar case is given by the anomalous magnetic moment of the electron e~
2mc . The dependence on ~ seems to be a clear

hint to the quantum mechanical origin of the moment. So let us see what happens in the calculation within the franework of

QED.

The relevant amplitude describing the scattering of an electron in an external e.m. field is given by (Schweber 1962,543):

R = +2πieũ(p2)(γν + ΛCν(p2, p1))u(p1)a
ν(p2 − p1) (199)

where the first term is the contribution without radiative corrections and ΛCν represents the radiative corrections after re-

nomalization. This may be cast into the form 83

R = +2πieũ(p2)

{

F (k2)γν −
i

2m
kµσνµ

}

u(p1)a
ν(p2 − p1) (200)

with kµ = p2µ − p1µ.

How does the magnetic moment of the electron enter the game? Let us go back to the Dirac equation. The electromagnetic

properties of a Dirac particle are best exhibited by a transformation to a Foldy-Wouthuysen representation. However: ”In the

presence of interaction, the generator for the transformation can only be obtained as a power series expansion in powers of

the Compton wave length h/mc of the particle. The transfomed Hamiltonian is therefore likewise obtainable only in a power

series in the same parameter” (Schweber 1962,102). This expansion pops up an interaction term of the Dirac particle with a

magnetic field:

− e~

2mc
β~σ · ~H (201)

signalling an anomalous magnetic moment of one Bohr magneton e~
2mc

84. This is how ~ enters the scene.

82Since working with units ~ = c = 1 ω = |k| denotes the energy of the photon.
83This is the most general form of the matrix element and follows from the relativistic and gauge invariance of the S-matrix formalism and from t+he

assumption that the external field is weak so that- only terms linear in the external field need be considered (Schweber 1962,543).
84Gauss units
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Foldy conceived the most general Dirac equation in powers of k2n with coefficients ǫn and µn, where ǫ0 is the static charge

and µ0 the static anomalous magnetic moment. This leads to an amplitude (Schweber 1962,544)

RF = −2πiũ(p2)

∞
∑

n=0

[ǫnk
2nγν − ikµσνµµnk

2n]u(p1)a
ν(p2 − p1) (202)

By comparison we see that the radiative corrections of QED lead to a charge distribution−eF (k2) and an anomalous magnetic

moment distribution −e
2mG(k

2). ExpandingG(k2) and F (k2) 85 in powers of k2 we see that −e
2mG(0) = µ0, µ0 denoting the

Foldy coefficient referring to the anomalous magnetic moment in lowest order. Again, nowhere in this comparison ~ enters

the stage.

The decisive clue with respect to our question is provided by the observation that the magnetic moment µ0 is multiplied with

the associated matrix kµσνµ of the covariant wave vector kµ of the photon. Like in the case of the Rydberg constant, it is up

to our convention in what terms we interprete the result. The QED calculation gives the simple result G(0) = α/2π, i.e. in

terms of a parameter referring to flat space with no ~ present. ~ enters post festo when we translate the covariant photon wave

vector kµ into the contravariant entity pµ by borrowing pµ = ~kµ from Quantum Mechanics 86. Our wish for interpretation

whence makes us express the result of QED (1 + α/2π) in terms of quantum mechanical Bohr magnetons (Schweber 1962,

544).

These considerations apply as well to the Lamb shift as to other results of QED or likewise the Dirac equation. They show

that no ~ is present in QED.

C.3.5. Rutherford scattering

Our last exmple Rutherford scattering, is a beautiful example for generating the dependence on α not by the additional factor√
~c of photon lines but by multiplication with the Cartan associated matrix of the e.m. potential 6a in momentum space.

The differential cross section for the scattering of an electron on an external field according to QED is given by (Schweber

1962,456):
dσ

dΩ
=

Z2α2

4p2v2sin4 Θ
2

(1− v2sin2 1

2
Θ) (204)

with v the velocity of the incoming particle (c=1) and Θ the scattering angle. This Rutherford formula with the spin related

additional factor (1− v2sin2 1
2Θ) clearly displays an α-dependence, but not with first power of α as expected for a first order

process.

It is worthwile to have a glance on how the coupling constant α comes about in this case. The amplitude of the respective

Feynman diagram to order n = 1 is given by

M (1)
e =

(

ie

~c

)(

m2

E(p1)E(p2)

)1/2

2πũs2(p2) 6a(p2 − p1)us1(p1) (205)

If the external e.m. field is the Coulomb field of a nucleus of charge +Ze then A0 = Ze/(4πr) and the associated matrix of

its Fourier transform is

6a(q) = Ze

4π

1

2π2q2
δ(q0)γ

0 (206)

The transition amplitude therefore is given by

M (1)
e =

Ze2i

4π2~c

(

m2

E(p1)E(p2)

)1/2

ũs2(p2)
1

|p2 − p1|2
γ0us1(p1)δ(E2− E1) (207)

85F (k2) gives a lengthy expression which approaches 1 and

G(k2) =
α

2π

2Θ

sin2Θ
; sin2Θ =

k2

4m2
(203)

which approaches α
2π

for k2 → 0.
86For easier reading we skipped the metric gµν which would have to become applied when translating from covariant to contravariant entities and vice

versa. We thus adapt to Quantum Mechanics which operates in 3-dim space where the metric is obsolete. And so we loosely use pµ = ~kµ to indicate the

transition from covariant to contravariant entities. Consequently this should have been written as: pµ = gµν~kµ.
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whereE2 = E1 = E is the energy of the electron (Schweber 1962,453/454). Thus already in the first order amplitude a factor

α = e2/~c gets established. The analysis of the Feynman amplitudes in the last section but showed that the power expansion

of the S-matrix delivered a factor (−ie/~c) per knot and that the critical ratio e2/~c of the e.m. coupling constant became

established by multiplication not with e but with
√
~c per knot from the photon contribution so that at every knot the e.m.

coupling constant becomes manifest after taking the square of the amplitude.

Rutherford scattering exposes that the
√
~c contribution of the photon gets replaced by the associated matrix 6 a(q) (q =

p2−p1) of the Fourier transformed e.m. potential which shows no reference to ~ whatever. The appearance of the associated

matrix is the guarantor for the disappearance of the ~ reference. What seemed to be a 1st order approximation now corresponds

to the 2nd order Compton scattering with one particle having infinite mass. That is the reason why Rutherford scattering shows

the same α-dependence as the 2nd order Compton scattering (sect.C.3.3) does.

D. The nature of fundamental constants

We will recall the role of the constants κ and ~ that make them to be considered fundamental. And we will recall the distinct

nature of constants like the velocity of light c and the elementary charge e. But let us comment on the meaning of λ, the

cosmological constant.

xxxxx

D.1. The fundamental constant λ

It is instructive to note that the factual value of the constant λ is incredibly small. In all practical numerical calculations the

λ-term may be neglected and eq.(3) may be replaced by

Gµν = 0. (208)

In spite of the disappearance of λ in further calculations Eddington’s derivation of the Einstein field equation shows that λ
plays a crucial role. For Eddingtonλwas irreplaceable for systematic reasons. Chandrasekhar in his 1983 laudation (Chandra-

sekhar 1983,39) quoted him 87 : to set Λ = 0 is to knock the bottom out of space (Chandrasekhar 1983,39).

λ today is believed to provide a measure for the contribution of dark energy in the cosmos. The observational results, so a

2016 Chandra bulletin (http://chandra.si.edu/photo/2016/clusters/, Release Date April 28,2016), ”support the idea that dark

energy is best explained by the cosmological constant” . . . The results ”confirm earlier studies that the amount of dark energy

has not changed over billions of years.”

From the derivation of Eddington this behaviour might have been expected. What we call dark energy according to his

derivation is reflecting the feature that physicists approach the world by means of measuring. λ serves to identify the metric

(used in our observations and which reflects our familiar units) with the Einstein tensorGµν (the units of which are unknown).

Hence the existence of λ is important but not its value. Eddington compares this circumstance with the enormous size of the

entropy, whose absolute value is of no importance but whose existence as an entity with a finite value allowing for definite

comparison makes up its systematic importance. (Edd 1923,TBD).

For empty space Edddington derives:

− ds2 = 3/λ (209)

This means the quadric of curvature is a sphere of radius
√

3/λ and the radius of curvature in every direction and at every point

in empty space has the constant length
√

3/λ. Conversely if the directed radius of curvature in empty space is homogeneous

and isotropic Einstein’s law will hold.

This means: The length of a specified material structure bears a constant ratio to the radius of curvature of the world at the

place and in the direction in which it gets measured (Edd 1923,153).

87Not without expressing his doubt: In any event, it is clear that no serious student of relativity is likely to subscribe to Eddington’s view that ’to set Λ = 0
is to knock the bottom out of space’. (Chandrasekhar 1983,39)
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D.2. The fundamental constants κ and ~

D.2.1. Introducing covariant entities as standard opened up a wide technical window of accuracy

The quantum-mechanical identification of the contravariant energy with the covariant frequency opened up a completely new

technical window for the accuracy of measurement 88. It was the start for discarding material prototypes of measuring units

in favor of the use of fundamental constants.

Taking a covariant entity, the wave vector, as the base of measurement in the 1970’s led to an explosive extension of the

outreach of accuracy down to microscopic scales.

The essential role of measuring frequencies in quantum metrology (Cook 1972, Cook 1975, Petley 1983) is given by the fact

that multiplication with ~ delivers the energy of the system, hν. This makes up the pivotal role of the gyromagnetic ratio

2µP /h of the proton for the determination of the magnetic field hν = 2µPB and of the Josephson constant 2e/h for the

determination of the electric field, n× hν = 2eV .

D.2.2. Contravariant measuring entities need to be identified with covariant space variables

Eddington’s conjecture encompasses a theory of measurement. In this framing fundamental constants are featuring the iden-

tification of the contravariant measuring entities of classical physics with the covariant variables of the respective space

concept. This signifies one of these dimensions to become redundant.

The constants which identify contravariant measuring entities with covariant space variables are:

• κ, the Newtonian gravitational constant, that makes the measuring entities of classical physics compiled in the energy-

stress tensor T µν to be identified with the curvatures of the Riemannian space concept compiled in the Einstein tensor

Gµν . Given in [cmg−1] the Newtonian constant makes the inertial mass given in [g] to be identified with the heavy

mass given in [cm].

• ~, Planck’s action quantum, that makes the energy-momentum pµ to be identified with the wave vector kµ 89. Given in

[erg · s] it allows to identify the contravariant entity energy [erg] with the covariant entity frequency [s−1] of the wave

vector.

Mass historically has been introduced as heavy mass with the dimension [cm] and as inertial mass with dimension [g], because

space and matter at the time of Newton were believed to be mutually independent. The experimental finding that both kinds

of masses are equivalent found an early expression by the Newtonian gravitational constant κ with the dimension [cm/g]
signifying that one of these two dimensions is redundant. Because it corrects for the historically introduced distinction this

constant has a fixed value which makes it to become a fundamental constant.

Plancks action quantum ~ by identifying the contravariant entity energy with the wave variable frequency signifies that

particles and waves are mutually conditioning each other making one of these dimensions, energy or frequency, to become

redundant. Also this constant is considered fundamental because having a value that is historically fixed.

D.2.3. Featuring the transition from a logical exclusion principle to mutual conditioning

Plancks action quantum as well as Newton’s gravitational constant signal the abolition of the government of a classical

european philosophy featuring an exclusion principle:

• space [cm] and matter [g] in Newtonian philosophy were thought to be mutually exclusive and consequently equipped

with dimensions that appeared to be independent. κ [cm/g] signals the scar where the intimate relation between these

two dimensions got restored. In general relativity the Newtonian constant κ with the dimension [cm/g] mediates the

88There is a grave reason to prefer a measurement based on frequencies against one based on wave lengths:

”...there is no doubt that the more fundamental standard is one of frequency. ... Frequencies can be established and compared at a single site

without regard to geometry or extension in space, whereas the definition of wavelength depends on geometrical circumstances”(Cook 1972,

487)

89separately for each non-relativistic component
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necessary correction of the historical Newtonian division to regard matter [g] and space [cm] as two entities seemingly

completely independent of each other. The Einstein field equations describe how space and matter are mutually condi-

tioning each other: a distribution of matter is curving space and the curvature is determining the motion and hence the

distribution of matter.

• particles [erg] and waves [s−1] in a classical view seemed to be fundamentally distinct: particles could be thought of

being localizable, whereas waves by definition could not be localized. This was the base of the century long dispute

between the Newtonian corpuscular theory and the Fresnel wave theory of light. ~ [erg/s−1] signals the scar where

an intimate relation between these two aspects got restored. The Planck constant ~ [erg]/s−1 mediates the necessary

correction of a historical European division that regarded particles represented by pµ [erg] as completely independend

of waves represented by the covariant wave vector kµ [s−1]. In Quantum Mechanics the objects are neither waves nor

particles. Instead both these specifications are conditioning each other making particles to behave as waves and waves

becoming represented by quanta. Quantum Mechanics succeeded to describe waves and particles as two different

aspects of the same object.

Both universal constants have fixed values because they undo the historical decision to consider the respective dimensions

as mutually exclusive. Their value hence is historically fixed. There is not any need nor any possibility to calculate these

constants within the theoretical framework of physics.

D.2.4. ~ is of relativistic nature though Quantum Mechanics is a non-relativistic theory

Relativistic theories are living in spaces endowed with a pseudo-euclidean metric allowing to operate with a preferred coordi-

nate identified with time called x0 = ict. Quantum Mechanics genuinely is a non-relativistic theory. The concept of Quantum

Mechanics relies on the representation of measurable variables by hermitian operators. An imaginary time does not allow for

a hermitian operator representation. In the framework of Quantum Mechanics hence space and time are not linkable within a

common metric. Quantum Mechanics is a genuinely non-relativistic theory.

It is remarkable that although ~ emerged in the framework of a non-relativistic theory, it nevertheless mediates relativistic

relations. The non-relativistic identifications (see p.25) of Quantum Mechanics relating to ~ easily allow for a relativistic

notation: pµ = ~kµ, Aµ = ~aµ, m0 = ~µ. This series is complemented by the identification e2 = αem~. e2 is referring

to Maxwells electromagnetism, a genuinely relativistic theory, and αem is belonging to the Standard Model which as well

describes a relativistic theory.

This relativistic nature of ~ is the condition to give it such a preeminent role in the determination of the SI units by the BIPM.

D.3. The fundamental constants c and e

D.3.1. The fundamental constant c: correcting for a historical misconception

It is worthwile to shed light on the constant c. This constant should not be confused with the velocity of light. Only in SRT

the velocity of light takes the constant value c. In General Relativity the velocity of light is different at distinct locations and

even at the same location it may be different for distinct directions. (Edd 1923,93)

By introducing the imaginary coordinate x0 = ict SRT aimed for two achievements.

• The fundamental constant c [cms−1] corrects for the Newtonian judgement to posit space and time as two independent

pilars of perception equipped with distinct dimensions [cm] and [s]. In the framework of SRT time is given a position

highly symmetrical to space making the invariant length element ressemble the quadratic form of flat space in four

dimensions underlined by eventually setting c = 1.

• Making time an imaginary coordinate was the only way to allow to identify the electric and magnetic field with the

polar and axial components of the bivector by maintaining them to be measurable entities. (see Cartan 1938,132)

Whereas the constant c may be set to 1 to achieve simplifications in representation the imaginary character of time may not

be discarded without running into contradictions.

The constant c corrects for a historical misconception taking time and space to be independent categories. The value of c
hence is historically fixed and does not require for any physical determination. In contrast to κ and ~ c does not identify
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contravariant with covariant variables but operates in the contravariant sector alone. This allows to consider the 4-dim space

of SRT as a representative of flat space endowed with a pseudo-euclidean metric.

The primary goal of Lorentz transformations in our opinion is not to keep the velocity of light constant in any reference

system. 90 Instead they guarantee the correction c for the misconception of taking time as fundamentally independent of

space being the same in every reference frame. This then coincides with the velocity of light.

D.3.2. The electric charge e: signifyer of the antisymmetric sector of the space concept

There are similarities between the electric charge e and the two constants κ and ~. All three are mediating the identification

of contravariant measuring entities with covariant space variables. But the siuation concerning the electric charge is a little

more subtle.

In the case of electric charge it is the electric current Jµ which gets identified with the divergence of the electromagnetic field

Fµν
∂Fµν

∂xν
= Jµ (210)

Though looking similar to the identification of the energy-stress tensor T µν with the Einstein tensor Gµν

Gµν − 1/2gµνG = 8πκT µν (211)

there is nevertheless a fundamental difference: the electromagnetic field Fµν belongs to the antisymmetric sector of space

whereasGµν represents the symmetric sector. And we note: e, the electric charge, which serves to identify the electric current

with the divergence of the bivector of flat space is not displayed explicitly.

.

The procedure of classical electrodynamics to not display the charge explicitly in eq.(210) means to give the field Fµν the

dimension [charge/cm2] making the electric charge to become a signifier of the antisymmetric sector of the flat space

concept. The density ρ then automatically denotes a charge density. This procedure though consistent hides the origin of the

e.m. field Fµν as the antisymmetric twin of the symmetric Einstein tensor Gµν both deriving as the trace of the Riemann-

Christoffel tensor Bλµνσ . (Edd 1923,198,223)

Contrary to the fundamental constants κ and ~ signifying that a dimension that had been introduced historically turned out

to be redundant the electric charge e does not stand for the redundancy of whatever dimension. The electric charge takes the

role of a signifyer signalling that we operate in the antisymmetric sector of the space concept. This makes up the autonomous

meaning of the dimension [charge].

D.3.3. The electric charge is the quantum mechanical equivalent of the e.m. coupling constant αem

The weak and the strong interactions of the Standard Model are mediated by short-range fields. Because of the long-range

character of the e.m. interaction which made parts of the mediating field perceptible even for human eyes the bivector of QED

became represented by a classical electromagnetic field Fµν . Maxwells theory of electromagnetism is an early instance of the

interactions that genuinely are the object of the Standard Model.

The electric and magnetic fields became successfully identified with the polar and axial components of the bivector Fµν (see

sect.4, p.22) after a pseudo-euclidean metric had been imprinted on flat space (see sect.4.2.1, p.23).

By identifying the covariant variable of the space concept, viz. the bivector Fµν , with the contravariant measuring entity,

the current density Jµ, the electric charge in Maxwells’s electromagnetism seems to adopt a role similar to the one the

fundamental constant κ adopted in General Relativity and ~ in Quantum Mechanics.

But there is another aspect making the nature of the electric charge completely distinct from these two constants.

These latter denote each a rollback of a historical decision. The Newtonian constant κ [cm/g] is curing the historical split of

the heavy mass [cm] and the inertial mass [g] into distinct dimensions one of which turned out to be superfluous. Similarly

Plancks quantum ~ [erg · s] is curing the split between energy [erg] and frequency s−1 making one of them to become

superfluous.

90Why should it be constant? In General Relativity the velocity of light may be different at different locations and even at the same location it may be

different in different directions.
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The electric charge historically has got another role. The electric and magnetic field have got assigned the dimension

[chargecm−2, to make the divergence a charge density. This means 1
eFµν would denote the antisymmetric twin of the

metric gµν . Electric charge has become a signifyer denoting the electric and magnetic field to represent the antisymmetric

sector of the space concept.

But where does the electric charge get its value from?

In QED αem takes on the value αem = e2/(~ · c). Putting c = 1, this relation reads

e2 = αem~ (212)

Comparison with the set of identifications characterizing Quantum Mechanics (p.25) shows the electric charge e2 to be the

contravariant equivalent of the covariant coupling constant αem, as could be expected.

According to Wyler (1968) αem is conjectured to have a fixed value αem ∝ 1/137 determined by group theoretical relations

intrinsic to flat space. The electric charge hence is not a fundamental constant because signifying a historical decision but

because representing a geometric property of flat space like do the coupling constants of the other interactions.

The mediating constant of Maxwell’s electromagnetism appears to be mediated itself by ~ referring to the framework of

Quantum Mechanics. Quantum Mechanics hence seems to take the role of a mediator between Maxwell’s electromagnetism

and QED.

Contrary to the fundamental constants κ and ~, that signify that a dimension that had been introduced historically turned out

to be redundant the electric charge e does not stand for the redundancy of whatever dimension. The electric charge takes the

role of a signifyer signalling that we are in the antisymmetric sector of the space concept and its constant value represents a

geometric property of flat space when taken to be complex.

D.4. The coupling constants of elementary particle physics

D.4.1. The Cartan invariant makes the identification of contravariant with covariant entities obsolete

In case of elementary particle physics an identification of contravariant measuring entities (vectors) with covariant space

variables (spinors) is obsolete.

There is a simple reason for this: The new Cartan invariant ξT
′

C X
(p)
ξ is built up from covariant (spinor) and contravariant

(vector) entries. Identifying fermions with spinors and bosons with the associated matrices of multivectors, the Yukawa form

of the invariant allows for a dynamical interpretation: a fermion gets transmuted to become another fermion mediated by a

boson. Several such transmutations are taking part under the roof of the same invariant. This allows to get experimental results

in terms of conditional probabilities. No identification of contravariant with covariant entities is needed.

In case of the e.m. interaction the new covariant coupling constant αem reappears in Maxwell’s electromagnetism as the

contravariant electric charge e2/c = αem~. e serves to identify the divergence of the bivector field Fµν with the current

density Jµ.

In terms of QED this current density is made of two spinors, ψ̃γµψ. Whereas the fields in General Relativity Gµν have

a dimension [cm−2] the electric charge for historical reasons has been integrated within the dimension of the e.m. field

to become [charge cm−2]. The e.m. identification ∂νF
µν = Jµ then operates with a dimension [charge cm−3] without

exposing the charge explicitly. 91

D.4.2. The coupling constants denote geometrical features of flat space

Another type of constant is entering the theatre. Since the different types of interactions result from representations of the

Cartan invariant in different dimensions, the ratio of the group volumes of the respective spaces is expected to provide a

measure for their relative coupling constants.

Without knowing Cartan’s spinor theory and its application to the Standard Model Wyler in 1968 conjectured the value of the

electromagnetic coupling constant to be given as the group-theoretical ratio of volumes of flat hyperspaces allowing him to

calculate the famous value 1/137 for the e.m. coupling constant. His method later became extended to calculate the coupling

constants αweak, (TBD) and αstrong (TBD) of the weak and strong interactions.

91There is a hiatus in our exposition up to now. We did not investigate why the electric charge appears squared in the relation e2/c = αem~.
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The coupling constants of elementary particle physics, the most famous one being the fine structure constant αem ∝ 1/137,

are conjectured to denote ratios of group volumes of flat space (Wyler 1968,...TBD). This is supported by the finding that

the distinct interactions of elementary particle physics represent the Cartan invariant in different dimensions of complex flat

space.

The value of these constants whence is essentially determined by geometrical relations of flat space as first calculated by Hua

(TBD) and used by Wyler (1968,1969,1972,TBD).

E. Towards experimental verification

E.1. Basic postulates of the theory of elementary particles are recovered

Basic postulates of the theory of elementary particles are recovered:

• the term in the spinor theory of Cartan which we identify with an interaction naturally describes the occurrence of

parity violation under certain conditions, e.g. for ν = 2 and p = 1. This parity violation had to be introduced ad hoc in

the Standard Model.

• For ν = 4 the equal number of components (eight) of the isotropic vector and the two semi-spinors leads to the

phenomenon of triality described extensively by Cartan. We conjecture this triality to be the reason for the three

generations observed for elementary particles 92.

• the existence of two classes of particles, right-handed ones and left-handed ones

• the existence of a new type of invariants providing for the interactions,

• the TCP theorem,

• the Fermi statistics,

• the parity violation in weak interactions,

• the confluence of e.m. and weak interactions into an electro-weak

They may be easily derived within the framework of the spinor theory of flat space.

E.2. the quest for unification TBD

E.2.1. Spinor 16+ seems to be the answer to the quest for unification

The quest for unification has led to probe several higher symmetries. Wilczek (2006) underlines that to allow for a more

extensive symmetry the quarks and leptons must furnish the material for building unified structures that remain coherent

under the extended symmetry. He notes:

”One particular unified symmetry passes this test with flying colors. Although the smallest simple group into

which SU(3) ⊗ SU(2) ⊗ U(1) could possibly fit is SU(5) - it fits all the fermions of a single family into two

representations (10 + 5) and the hypercharges click into place - a larger symmetry group, SO(10) fits these

and one additional SU(2) ⊗ SU(2) ⊗ U(1) singlet particle into a single representation (the spinor 16). All 15

quarks and leptons appear on the same footing and the additional particle, which has the quantum numbers of

a right-handed neutrino, is quite welcome: it plays a crucial role in the attractive ’seesaw’ model for neutrino

masses.”(Wilczek 2006,242 (written 2003))

92The objections of Zee against the derivation of the three generations from triality in our opinion don’t apply. They are based on the group theory of

unitary transformations which in general have no spin representations (Zee,2016)
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It turns out that spin(16) viz. the 1/2 × 2ν-dimensional semi-spinor representation related to ν = 5 in fact does decompose

into all the representations that are required for the Standard Model and its appropriate extension (sect.F.3.3,p.F.3.3): 16+ →
1⊕ 10⊕ 5∗. So it contains what was expected and hoped for already by using SU(5).

The spinor representations of SO(2ν) indeed have the exponential dependence characterizing its dimension to be dim(SO(2ν)) =
2ν , as we know it from Cartan. For the space dimension 2ν = 10 being even this leads to an irreducible representation in form

of semi-spinors with dimension 2ν−1 (sect.3.3.2, p.16). Thus for ν = 5 this results in the now famous spinor 16+, which

assembles all particles including the antineutrino in one representation, all of them with the correct quantum numbers.

Wilczek concludes:

”Where before we had a piecemeal accomodation of the observed particles, now we have a marvellous corre-

spondence between reality and a unique, ideal mathematical object.”(Wilczek 2006,242)

E.2.2. The antineutrino as an additional benefit of spin(16)

The discovery provided for an additional benefit. The mysterious intruder, an ”additional” singlet under SU(5) turns out

to be the right handed neutrino, i.e. the long lost antineutrino field. It is a singlet under SU(5) and thus the more under

SU(3)× SU(2)× U(1). (Zee 2016,552)

It is most intriguing that the extra field in the sixteen-dimensional representation of SO(10) turns out to have precisely the

right properties to be associated with a neutrino spinning right-handedly. 93

E.3. Tentative identification of the interactions

The series of electromagnetic, electroweak and strong interactions could naively be identified with the series of dimensions ν
and their respective unitary transformations SU(ν). The spinors in dimension ν have 2ν components and could then be:

• ν = 1 e.m. interaction (e−R, e
+
R)

• ν = 2 el.weak interaction (e−L, νL, uL, dL)

• ν = 3 strong interaction (e−L, νL, u
rgb
L , drgbL )

But this obviously is to simple an identification, since the left- or right handed fundamental particles should be the components

of semispinors, which have 2ν−1 components only, and moreover the charge conjugates are missing in this too simple scheme.

F. How can experiments/observations report the structure of the space concept?

F.1. The crucial question of theory building

We are facing the crucial question of physical theory building:

• is the gravitational field an object of Nature that our measuring appliances detect in Nature and which we are able

to describe by the metric of Riemannian space? Are the leptons and quarks objects of Nature, that our measuring

appliances detect and which we happily can describe as spinors? How then could it occur that Nature is mimicking the

structure of our space concepts down to such a level of ramification?

• or do physicists adopt a space concept that allows them to encode the condition of the possiility to measure and theory

and experiment trace the physiognomy of the adopted space concept ?

93”This Weyl field does not participate in the strong, weak, and electromagnetic interactions. In plain English, he is a lepton with no electric charge, and is

not involved in the known weak interaction. Thus we identify the mysterious 1 as the ”long lost” antineutrino field νcL. This guy doesn’t listen to any gauge

bosons, known or unknown to experiments. Even the gauge bosons of SU(5) don’t know about him.

We are using a convention in which all fermion fields are left handed and hence we have written νcL. By a conjugate transformation this is equivalent to the

right-handed neutrino field, which was missing from the SU(3⊗ SU(2)⊗ U(1)) theory.

Why have experimentalists not seen it? The natural explanation is that this field is endowed with a large Majorana mass.”

(Zee 2016,551).
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We try to convince our readers that there is no way to avoid the 2nd option, though it is contrary to traditional belief.

This 2nd option says: Men by measuring encounter nothing but themselves and their obsession to measure.

The objectivity of the results, viz. the independence of the results from who is performing the measurement then has its

roots not in the autonomous existence of something called Nature but is rooted in the autonomous framing established by the

underlying space concept equipped with the respective condition of the possibility to measure.

The consistency of the theory is borrowed from the consistency of the space concept. The fact that theory and experiment

work hand in hand is effected by something like the invisible hand of the consistency of the space concept.

We display in detail three examples of how this invisible hand of the space concept is working practically:

• Maxwell’s electromagnetism as emerging from the day-to-day experimental and theoretical efforts of physicists

• elementary particle physics (Standard Model) as based on a new aspect of traditional flat space

• General Relativity as a new theory based on a radically new concept of space

The space concept of General Relativity is Riemannian space. All the other branches of physics rely on flat space, adopting

their condition of the possibility to measure by making use of specific extensions of this concept.

F.2. Maxwell’s theory of electromagnetism

F.2.1. Faraday, Gauss, Ampère, Maxwell

Maxwell’s four homogeneous equations were composed of Faraday’s law of induction 94:

∇× ~E = −∂
~B

∂t
(213)

and of Gauss’s law for magnetism

∇ · ~B = 0 (214)

Maxwell’s four inhomogeneous equations were composed of Maxwell-Ampere’s law

∇× ~B = µ0
~j + µ0ǫ0

∂ ~E

∂t
(215)

and Gauss’s law for electricity

∇ · ~E = ρ/ǫ0 . (216)

Note that µ0ǫ0c
2 = 1.

F.2.2. The introduction of a displacement current by Maxwell

In Ampere’s original equations Maxwell had to posit an extra current µ0ǫ0
∂ ~E
∂t in eq.(215) called the displacement current.

It was needed in order to eplain magnetic fields that are produced by changing electric fields and to guarantee consistency

between Ampere’s circuital law for the magnetic field and the continuity equation for electric charge.

The current leaving a volume must equal the rate of decrease of charge in a volume. Put in a differential form this is the

continuity relation

∇ · ~J = −∂ρ
∂t

(217)

Ampere’s law in its original form states

∇× ~B = µ0
~j (218)

which implies the divergence of the current to vanish by virtue of the identity

∇ · ∇ × ~A = 0 (219)

94we use SI units
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~A being any vector. This contradicts the continuity equation. Adding the displacement term

∇× ~B = µ0
~j + µ0ǫ0

∂ ~E

∂t
(220)

we get

∇~j + ǫ0
∂∇ ~E

∂t
= 0 (221)

implying by Gauss’s law the continuity equation

∇~j = −∂ρ
∂t

. (222)

The introduction of the displacement current directly implies the high symmetry of Maxwell’s equations in empty space

(~j = ρ = 0)

∇ · ~E = 0 (223)

∇ · ~B = 0 (224)

∇× ~E = −∂
~B

∂t
(225)

∇× ~B =
1

c

∂ ~E

∂t
(226)

which implies the wave equations of e.m. fields. Taking the curl of eq.(225)

∇×∇× ~E = −∂(∇× ~B)

∂t
(227)

and substituting eq.(226) leads to

∇×∇× ~E = − 1

c2
∂2E

∂t2
(228)

With ∇×∇× ~E = ∇ · (∇ ~E)−∇2 ~E) we get with eq.(223) the wave equation of a plane wave for the electric field

∇2 ~E =
1

c2
∂2E

∂t2
(229)

The high symmetry guarantees a similar wave equation for the magnetic field. Both wave equations are mirroring the defining

characteristics of a flat space endowed with a pseudo-euclidean metric.

To grasp the intrinsic necessity of a pseudo-euclidean metric we will have a look at the bivector Fµν of flat space, which gets

identified with the electromagnetic field tensor F emµν .

F.2.3. The seesaw of the historical development

Using the displacement current in this derivation by now is generally accepted as a historical landmark in physics because it

allowed uniting electricity, magnetism and optics into one single unified theory. The displacement current term is seen as a

crucial addition completing Maxwell’s equations necessary to explain many phenomena, most particularly the existence of

electromagnetic waves. 95

Maxwell’s physical derivation using a sea of molecular vortices is unrelated to the modern day derivation 96 which has its

merits in free space. Not only that for this modern derivation a displacement current should exist in free space. By featuring

the wave equation it characterizes this free space to be a flat space constituted by the foundational quadratic equation endowed

with a pseudo-euclidean metric.

95The introduction of the displacement current is based on consistency between Ampere’s circuital law for the magnetic field and the continuity equation

for electric charge. It allows to predict correct magnetic fields in regions where no free current flows; it allows the prediction of wave propagation of

electromagnetic fields and the conservation of electric charge in cases where charge density is time-varying.
96https://en.wikipedia.org/wiki/Displacement current#Wave propagation, history and interpretation. (last call 31.Dec.2020)
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Guided by consistency relations the experimental and theoretical efforts turn out to trace the physiognomy of flat space. Not

only the wave equations display a pseudo-euclidean metric but already the identification of the electromagnetic tensor with

the bivector of flat space to be consistent demand this metric.

This metric then achieves Maxwells four inhomogeneous equations to become the relativistic identification eq.(70) of the

covariant variables of the space concept compiled in F emµν with the contravariant measuring entities compiled in Jµ provided

the two restrictive conditions eq.(63) and eq.(67) set by the bivector are met.

Both intermezzi, introducing the displacement current and imposing on space a pseudo-euclidean structure, vividly document

the flexibility with which theoretical description and experimental conceptualization are conditioning each other, driven by

and effecting a consistency of the space concept.

F.2.4. The emergence of SRT

Recognizing the exchange of signals by means of plane waves of electromagnetic light as one of the prominent means to built

a consistent apparatus of measuring required the pseudo-euclidean metric to become one of the basic fondaments of space

concepts needed for measuring in physics. Special relativity (SRT) makes the flat space concept developed in the framework of

Maxwell’s electromagnetism be mandatory for mechanics as well. SRT implied to adapt the equations of classical mechanics

accordingly by integrating time as far as possible into the set of space coordinates but nevertheless insisting on considering

time a preferred coordinate by imposing the pseudo-euclidean metric. Such a preference of time is the foundation of the

kinematics and dynamics of classical physics.

The revolutionary impression of SRT stems from discarding the Newtonian exclusion logic deeply imprinted in western

tradition suggesting space and time to be completely independent entities. Space and time conditioning one another implied

the loss of the notion of simultaneity connected with a universal time.

A special relativistic notion seemed to become the prerequisite of any theory in physics, even in General Relativity in a local

environment. The only exception is Quantum Mechanics. 97 The advent of General Relativity made the realms of physics

based on SRT to become a coast realm of physics being only locally valid as an approximation. The Minkowski metric, the

heart piece of SRT, constitutes an absolute object which though acting is not being acted upon. General Relativity by its

intrinsic philosophy does not allow for the existence of an absolute object (Norton,1993).

F.3. How elementary particle physics did develop to be tracing the physiognomy of complex flat space

F.3.1. The development of elementary particle physics

Dirac in his search for a relativistic extension of the Schrödinger equation discovers an equation in which the wave functions

necessarily are replaced by spinors and the classical vectors pµ are to be replaced by their associated matrices γµp
µ.

Without any notion of it he enters the world of definitions of Cartan’s complex space, in which spinors are the parameters

that allow to span this space by isotropic vectors. The γ-matrices take over the role of the reflexion operators that transform

the vectors to associated matrices.

He finds spinors the defining equation of which constitutes the massless Dirac-equation which when equipped with mass

henceforth is presumed to be the relativistic extension of the Schrödinger equation searched for. As a byproduct the space

of Quantum Mechanics, the wave functions of an infinite-dimensional Hilbert space, gets replaced by the familiar 4-dim flat

space inhabited by the 4-component Dirac spinors which show a strange transformation profile but live in cohabitation with

the four-component classical vectors pµ.

Extending the space to be complex and equipped with more than four real dimensions he would detect the spinors to have

22ν components in a space with complex dimension ν the real dimension being n = 2ν or n = 2ν + 1

But history selected another path. The classical introduction of the e.m. potential Aµ by the replacement pµ → pµ − e/cAµ
led to the notion of generalized gauge invariance replacing the universal gauge by a localized gauge Ψ → Ψeiφ(x) centered

around U(1) which with the extension to SU(2) und SU(3) laid the fondament for the success of the Standard Model of

elementary particle physics. In this representation the spinors though building the fondament as 2-dim Weyl spinors play

97The preferred coordinate of the pseudo-euclidean metric gets identified with time. The price to be payed in this special relativistic framing is the

requirement that time be imaginary. This has become the obstacle that hinders Quantum Mechanics to adapt to special relativity. To be a measurable entity

time would have to be represented by a hermitian operator. As long as time is imaginary this proves to be not possible.
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an underpart whereas rotations in form of unitary symmetries are the dominant actors embossing the view of bosons as the

generators of unitary symmetries.

The search for a higher symmetry that could provide a common representation for fermions and bosons then led to SU(5)
whose representations provided a home for fifteen fundamental particles thereby easily neglecting the never seen right-

handed neutrino. The experimental detection of neutrino oscillations giving a mass to the neutrino and therefore asking for

the existence of right- and left-handed neutrinos led to replace SU(5) by its cover SO(10). These orthogonal rotations in

contrast to unitary transformations provide for spinor representations, which by the now famous 16+ representation provide

home for the 16 fundamental leptons and quarks known today and with all the intrinsic distinctions clicking in place.

By realizing that the interaction Hamiltonians postulated in the Standard Model for the e.m., the weak and the strong inter-

action essentially mimic the Cartan invariants ξTC X
(p])
ξ it is rather obvious that this historical development led us right away

into the representation of a complex flat space as unfolded by Cartan in 1938.

Obviously the internal consistency of a complex flat space provided the invisible hand which after having got access to

4-component spinors by trial and error (Dirac) enabled to grasp this space concept as a whole.

F.3.2. A long journey: finally discovering the spinor structure

In his 2016 book Group theory in a nutshell for physicists Zee presents an overview on the historical development of elemen-

tary particle theory.

It began with the historical accident of the Dirac equation in 1928 which for the first time discovered for electrons a represen-

tation by spinors. Till then electrons were represented in electrodynamics as the charged point source of an electromagnetic

potential. Since 1925 an identification with the mathematical support of the generators of translations combined with Galilei

transformations flashed up which increasingly got large credibility in the framework of Quantum Mechanics (see below). The

stabilization of the identification with spinors had to wait till the advent of QED in Schweber’s Introduction to QED (1962)

which changed the quantum mechanical view to become a hybrid of Quantum Mechanics and a quantum field theory. The

growing influence of symmetries fired by the success of generalized gauge invariance allowed to widen the view to a theatre

of elementary particles dominated by unitary symmetries, U(1), SU(2), SU(3), SU(5).

Zee in detail describes the seesaw of these representations, which obstruct a representation by spinors, till the advent of

SO(10), which allowed for the 16+ spin representation.

F.3.3. Spinor 16+ seems to be the answer to the quest for unification

The enduring quest for unification has led to probe several higher symmetries. Wilczek (2006) underlines that to allow for a

more extensive symmetry the quarks and leptons must furnish the material for building unified structures that remain coherent

under the extended symmetry. He notes:

”One particular unified symmetry passes this test with flying colors. Although the smallest simple group into

which SU(3) ⊗ SU(2) ⊗ U(1) could possibly fit is SU(5) - it fits all the fermions of a single family into two

representations (10 + 5) and the hypercharges click into place - a larger symmetry group, SO(10) fits these

and one additional SU(2) ⊗ SU(2) ⊗ U(1) singlet particle into a single representation (the spinor 16). All 15

quarks and leptons appear on the same footing and the additional particle, which has the quantum numbers of

a right-handed neutrino, is quite welcome: it plays a crucial role in the attractive ’seesaw’ model for neutrino

masses.”(Wilczek 2006,242 (written 2003))

It turns out that spin(16) viz. the 1/2 × 2ν-dimensional semi-spinor representation related to ν = 5 in fact does decompose

into all the representations that are required for the Standard Model and its appropriate extension (sect.F.3.3,p.F.3.3): 16+ →
1⊕ 10⊕ 5∗. So the spinor representation contains what was expected and hoped for already by using SU(5).

The spinor representations of SO(2ν) indeed have the exponential dependence characterizing its dimension to be dim(SO(2ν)) =
2ν , as we know it from Cartan. For the space dimension 2ν = 10 being even this leads to an irreducible representation in form

of semi-spinors with dimension 2ν−1 (sect.3.3.2, p.16). Thus for ν = 5 this results in the now famous spinor 16+, which

assembles all particles including the antineutrino in one representation, all of them with the correct quantum numbers.

Wilczek concludes:
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”Where before we had a piecemeal accomodation of the observed particles, now we have a marvellous corre-

spondence between reality and a unique, ideal mathematical object.”(Wilczek 2006,242)

We conjecture that the ideal mathematical object behind the spinor is the space concept of Cartan which once detected delivers

the spinors and their interactions as well.

We conclude: Maxwell’s electrodynamics as well as the develoment of elementary particle theory are a perfect example of

how measuring consists in identifying the measuring entities with the variables of a space concept.

F.4. The birth of a new space concept

In general the space structure is determining the objects we are dealing with. Observations and the outcome of experiments

might enforce the transition to a new space concept. Observations that resist explanation indicate that the space concept in

use is too restrictive. The restriction may concern fundamental ingredients of the space concept requiring for a fundamental

change of concept as in General Relativity. Or it may indicate that there are features of the space concept in use hitherto not

exploited but rendering itself perceivable. This is what happened with the appearance of the other realms of modern physics,

e.g. Quantum Mechanics, each representing an activation of another hidden feature of flat space.

F.4.1. The birth of General Relativity

Two indicators prompted Einstein to switch to another space concept:

• The perihelion shift of Mercury known for centuries and resisting explanation within a Newtonian frame of thought

pattern prompted Einstein to skip the severe restrictions that had been imposed on classical physics by using the rigid

coordinate systems of Euclidean geometry requiring closed orbits in marked contrast to the observed perihelion shift.

• The equivalence of gravitational and inertial mass observed during the acceleration of free fall prompted Einstein to skip

the restriction on uniform velocities intrinsic to Galilean and Lorentz transformations when considering the relativity

of coordinate systems.

The transition to Riemannian space allowed to get independent of the use of coordinate systems by using tensors, tensor

equations staying covariant against arbitrary coordinate transformations.

The transition hence was not enforced by detecting and exploiting some new property of a hypothesized Nature. It was

induced by getting aware of and skipping a preconception in the own mind of physicists judging as relevant the rigidity of

a coordinate system and the preference of uniform velocities. The Riemannian space concept is not a more complicated one

favored by Nature but is a simpler one skipping unnecessary restrictions.

From now on a gravito-inertial field which we did not know before the advent of Einsteins General Relativity became identi-

fied with the metric gµν of Riemannian space.

F.4.2. The birth of Quantum Mechanics

Classical mechanics before 1900 was dominated by the deep rooted prejudice that Nature does not proceed via jumps (”Na-

tura non fecit saltus”). A space concept postulating its invariance against translations, rotations and Galilei transformations

appeared to be sufficient to guide the explanation of mechanical phenomena by using the contravariant entities energy, mo-

mentum and angular momentum for description. The covariant complement of this space concept, indispensable for a process

that is exploiting by means of measuring, seemed to play no role.

This covariant aspect is embodied in the Lie-algebra of translations spanned by the generators ω and ~k. Incorporating Galilei-

transformations in this covariant representation a parameter µ enters the covariant stage characterizing an inequivalence of

Galilei transformations which we easily recover in its contravariant twin, the inertial mass m0. The generators combine to

form a dispersion relation and a commutator both of which we a posteriori recognize to be the covariant equivalent of the

Schrödinger equation and the commutator of Quantum Mechanics (Jauch, 1968). Till here this is a completely classical

description of the covariant aspects of a homogeneous space concept incuding Galilei-invariance.
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The Schrödinger equation and the commutator of Quantum Mechanics appear on stage as soon as the contravariant measuring

entities E, ~p,m0 are identified with their covariant counterparts ω, ~k, µ by multiplying the latter with ~:

E = ~ω (230)

~p = ~~k (231)

m0 = ~µ (232)

The historical birth of Quantum Mechanics was heralded by the successive discovery of these identifications enforcing the

stepwise dissolution of the physicist’s prejudice that Nature doesn’t proceed by jumps and that particles and waves are

separated by an exclusion principle.

It began with the deep rooted inability to model the black body spectrum on classical grounds and the startling discovery by

Planck that eq.(230) would solve the quandary. The insight that light appeared to occur in the form of quanta appeared on the

horizon.

The surprising phenomenon of the photoelectric effect five years later led Einstein to propose a solution by eq.(230) supporting

the interpretation by light quanta. In 1924 de Broglie made the bold step to associate not only waves with quanta but also

particles with waves. Waves and particles from now on were conditioning one another instead of being separated by an

exclusion principle. Schrödinger’s equation in 1925 then completed the birth of Quantum Mechanics as a self-contained

theory based on a space concept determined by the generators of groups of translations combined with Galilei transformations.

The example shows observations being elucidated within the framework of a space concept to lighten corners of the concept

previously concealed by prejudice.

F.4.3. The birth of elementary particle physics

When Dirac 1928 in an attempt to break Quantum Mechanics’s resistance against its reformulation as a special relativistic

theory by trial and error introduced spinors into the theory nobody sensed this indicating the transition to a new concept of

space taken to be complex and being spanned by isotropic vectors. Spinors are the parameters needed to span the vector space

by these vectors of length zero. In his analysis of flat space taken to be complex and defined by reflections the mathematician

Cartan in 1938 exposed its structure in details which today we may recognize to reproduce the standard model of elementary

particle physics in all its ramifications as soon as we are identifying the leptons and quarks with the spinor components in flat

spaces with various higher dimensions.

Elementary particle physics is the paradigm of a realm of physics whose objects together with their interactions come into the

world as soon as a new space concept allows to define a condition of the possibility to measure. Leptons and quarks identified

with the spinor components get measured as soon as the experiments confirm the condition of the possibility to measure. This

condition is given by the Cartan invariant playing the role of a measuring stick and based on the defining equation of spinors

which in four dimensions when inverted turns out to be the Dirac equation.
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